求线性约束凸规划问题的最优解。
Objective: To search optimal solutions of convex programming problems with linear constraints.
文中对CHIP方法进行了改进并利用改进的方法去求解更大一类的非凸规划问题。
In this paper, they modify the CHIP method and use the modified one to solve a broader class of non-convex programming problems.
研究了线性约束的非线性凸规划问题,基于最优性的充要条件,提出了求解它的一个神经网络。
The paper studies the nonlinear programming problem with linear constraints. Based on its optimality conditions, a neural network for solving it is proposed.
该方法将网络训练问题变换为一系列的凸规划子问题,而这些子问题都可以在较短时间内获得全局最优解。
The proposed method transforms the training problem into a number of convex subproblems which can be solved in shorter time to obtain globally solutions.
本文对其做适当改进,用于解凸整数规划问题。
In this paper it is improved appropriately and applied to the convex integer programming problems.
根据凸分析理论和单纯形法原理,提出了指派问题的一个线性规划解法。
According to the raised analysis theory and the simplex method principle, proposed an assignment problem linear programming solution.
大量的关于随机的凸二次规划问题的数值实验结果表明它的计算效率是高的,在某些条件下可能是多项式时间算法。
Some numerical results for a large number of random convex quadratic programming problems show that the new algorithm is efficient and might be a polynomial-time algorithm under some conditions.
本文对半无限凸规划提出一个用方向导数表述的对偶问题,其对偶间隙为零。
The paper offers a dual problem for the semi-infinite convex programming by using the directional derivative with zero dual gap.
对等式约束的凸非线性规划问题的非线性方程组算法进行了研究。
This paper deals with the nonlinear equations algorithm for convex nonlinear programming problems with equality constraints.
利用组合极大熵同伦方法,研究一般的非凸非线性规划问题。
We utilized the combined maximum entropy homotopy method to solve the general nonconvex nonlinear programming problems.
应用已有的极点理论,优化相伴凸组合的界并改进整数规划问题的目标函数及变量的界。
Assuming knowledge of extreme points, we develop bounds for associated convex combinations and improve bounds on the integer programming problems objective function and variables.
针对凸约束非凸二次规划问题,给出了一个分枝定界方法。
In this paper, a branch-and-bound method is proposed for non-convex quadratic programming problems with convex constrains.
将一个凸多面体在“和形式”与“交形式”之间进行转化是数学规划中的一个基本问题。
To transfer a polyhedron between the "sum-form" and the "intersection-form" is a fundamental problem in the mathematical programming.
最后研究了广义集值变分包含问题与非凸规划之间的关系。
Finally, the relationships between generalized set-valued variational inclusion problems and non-convex programming are studied.
在凸规划理论中,通过KT条件,往往将约束最优化问题归结为一个混合互补问题来求解。
In convex programming theory, a constrained optimization problem, by KT conditions, is usually converted into a mixed nonlinear complementarity problem.
它将机器学习问题转化为求解最优化问题,并应用最优化理论构造算法来解决凸二次规划问题。
SVM transforms machine learning to solve an optimization problem, and to solve a convex quadratic programming problem by the optimization theory and method constructing algorithms.
将两凸物体间碰撞检测问题归结为一个带约束条件的非线性规划问题。
The problem of collision detection between a pair of convex objects is summed up a problem of non-linear programming with restrict conditions in this paper.
实例计算结果表明列队竞争算法是求解非凸非线性规划问题和混合整数非线性规划问题的一种非常有效的算法。
Computational results indicate that LCA is a very effective algorithm to solve nonlinear programming problems and mixed-integer nonlinear programming problems.
对于大规模的具有伪凸目标函数的二次规划问题,本文提出一种分解算法。
This paper proposes a decomposition algorithm for large scale quadratic programming with a pseudoconvex objective function.
利用组合极大熵同伦方法,研究一般的非凸非线性规划问题。
In this paper, we present a new interior point method-combined homotopy interior point method.
利用组合极大熵同伦方法,研究一般的非凸非线性规划问题。
In this paper, we present a new interior point method-combined homotopy interior point method.
应用推荐