推导了考虑大应变大位移的几何非线性有限元列式。
The geometric nonlinear finite element formulation is derived, including large strain and large displacement.
第二章介绍了几何非线性有限元的基本原理及求解方法。
Chapter 2 introduced the fundamental of geometrically nonlinear finite element method and solution methods.
利用几何非线性有限元方法研究了空间网壳结构的稳定性。
The stability of spatial latticed structures is studied by use of nonlinear geometric finite element method.
基于梁与索的现实构形,分别推导了梁与索的几何非线性有限元方程。
The geometrical nonlinear finite element formulations for both girder and tendon are proposed based on the present girder element.
采用大变形几何非线性有限元法分析强夯加固机理及其振动对环境影响。
The geometric nonlinear finite element method is used to analyze the impact mechanism of dynamic compaction.
根据几何非线性有限元理论,提出张力膜结构初始形态分析的8结点曲面四边形等参单元。
Based on geometrical nonlinear finite element theory, a curved quadrilateral isoperimetric element with 8 nodes for initial form analysis of tensile membrane structures is presented.
根据几何非线性有限元理论,提出张力膜结构初始形态分析的8结点曲面四边形等参单元。
Based on the geometrical nonlinear finite element (GNFE) theory, a curved quadrilateral isoperimetric element with 8 nodes for initial form analysis of tensile membrane structures is presented.
根据几何非线性有限元理论,提出张力膜结构初始形态分析的8结点曲面四边形等参单元。
Based on geometrical nonlinear finite element theory, a curved quadrilateral isoperimetric element with8 nodes for initial form analysis of tensile membrane structures is presented.
本文根据几何非线性有限元理论,提出张力膜结构初始形态分析的8结点曲面四边形等参单元。
Based on the geometrical nonlinear finite element (GNFE) theory, a curved quadrilateral isoperimetric element with 8 nodes for initial form analysis of tensile membrane structures is presented.
本文根据几何非线性有限元理论,提出张力膜结构初始形态分析的8结点曲面四边形等参单元。
Based on geometrical nonlinear finite element theory, a curved quadrilateral isoperimetric element with 8 nodes for initial form analysis of tensile membrane structures is presented.
在几何非线性有限元理论的基础上,建立了膜结构和索网结构非线性位移法找形分析的基本方程。
Based on the geometrical nonlinear theory, the equations for form finding of cable nets and membrane structures are established.
在模态分析的基础上,采用几何非线性有限元的分析方法,对悬索式管桥进行了横向风共振分析。
On the basis of the modal analysis, the nonlinear finite element is used to analyze the dynamic response of suspension pipe bridge to cross wind excitation.
在模态分析的基础上,采用几何非线性有限元的分析方法,对悬索式管桥进行了横向风共振分析。
On the basis of the modal analysis, the nonlinear finite element is used to analyze the dynamic response of suspension pipe bridge to cross wind excitation. The result show...
结合悬链线理论和几何非线性有限元方法,对空间缆索自锚式悬索桥成桥状态的确定方法进行了研究。
The catenary theory and geometrical nonlinear finite element method were adopted in determining the dead-load state of self-anchored suspension bridge with spatial cables.
本文根据几何非线性有限元理论,采用8结点曲面四边形等参单元,编制了用于张力膜结构内力分析的有限元程序。
Based on the geometrical nonlinear finite element (GNFE) theory, a curved quadrilateral isoperimetric element with 8 nodes for initial form analysis of tensile membrane structures is presented.
本文根据几何非线性有限元理论,采用8结点曲面四边形等参单元,编制了用于张力膜结构内力分析的有限元程序。
The internal forces in tensile membrane structures were analyzed using geometrical nonlinear finite element theory using curved quadrilateral isoperimetric 8 node elements.
基于几何非线性有限元理论,推导了折线形索单元的刚度矩阵,建立了索张拉预应力钢桁架的几何非线性数值分析模型。
Based upon the theories of geometrical nonlinearity, the stiffness matrix of cable elements are put forward and the numerical model of cable-prestressed steel structures are established.
悬索桥几何非线性分析部分的主要内容如下:首先,介绍了结构几何非线性有限元的基本原理,推导了几何非线性分析的T。
The main contents about geometric nonlinear analysis of suspension Bridges are as follows: First of all, the basic principle of geometric nonlinear finite element method for structures is introduced.
由二阶理论建立了梁杆结构分析的精确几何非线性有限元增量平衡方程,并利用精确有限元方法对一些典型结构进行了稳定性分析。
Accurate geometry! Non linear finite element increment equilibrium equation is set up by two orders theory. Typical structure stability is analyzed with this accurate finite element method.
本文基于焊接空心球节点单层网壳结构的构造特点,给出了一种不增加总自由度数的考虑焊接空心球节点影响的单层网壳结构几何非线性有限元分析方法。
This paper presents a geometrically nonlinear FEM with less degrees of freedom, of single layer reticulated shells when the effects of welded hollow spherical hodes are considered.
橡胶是一种特殊的材料,要实施橡胶制品的有限元分析,就要能综合处理几何非线性、材料非线性以及边界非线性问题。
Rubber is a very unique material, proper analysis of rubber components require handling the problems of geometric nonlinearity, nonlinear boundary conditions, and material nonlinearity.
本文采用的是非线性有限元法,它计及了材料和几何的非线性因素。
This article use nonlinear finite element method, considering the non-linearity both in material properties and in geometry of deformations.
本文采用有限元法分析考虑前屈曲几何非线性影响的结构稳定性。
This paper provides the structural stability analysis considering geometric nonlinearity on the prebuckling path by the finite element method.
提出考虑材料与几何双重非线性的钢管混凝土肋拱面内受力的计算方法并编制了有限元程序。
A method is presented to analyze the behavior of concrete-filled steel tubular (CFST) arch, which considers the material and geometric nonlinear property, and a finite element program.
该文应用具有平衡迭代格式的荷载增量法对非保守力作用下鞭天线结构的几何非线性问题进行了有限元分析;
The geometric nonlinear problem of whip antenna structure underthe action of nonconservative loads is analyzed by means of the loading incremental method which has the balanceiteration format.
基于已完成的G550冷弯薄壁型钢屋架结构承载力试验,采用通用有限元软件ANSYS,建立考虑材料和几何非线性的分析模型。
Based on the experiments of G550 cold-formed thin-walled steel roof truss structures, an analysis model considering geometry and material non-linearity is established using general FEM software ANSYS.
本文从适用于几何非线性分析的增量形式的虚功方程出发,建立了有限元计算公式。
A incremental virtual work equation, which is suitable for geometric nonlinear analysis of structures, is derived in this paper.
本文基于二次梁理论给出了该几何非线性问题的理论解,其正确性通过有限元的数值计算结果得到验证。
In this paper, the geometric nonlinearity problem is analyzed based on the second beam theory, and a theoretical solution is proposed, whose accuracy is verified by FEM numerical simulation.
考虑材料、几何和状态三重非线性,对钢框架梁柱腹板连接在循环荷载作用下的滞回性能进行了有限元模拟。
Hysteretic behavior of steel beam-column web connections in steel frames under cyclical load is simulated by finite element method involving material, geometry and status nonlinear.
针对以上难题,利用有限元法研究了钻柱在井底的二重非线性(几何非线性和接触非线性)问题。
Thus the finite element method is used to study the duplex nonlinearity (geometric nonlinearity and contact nonlinearity) of the drill string at the well bottom.
应用推荐