本文讨论了一类具有好的渐近参数的代数几何码。
In this paper, we discuss a class of algebraic geometry codes (A-G codes) with good asymptotic parameters.
主要讨论了一点代数几何码的伴随式阵列及其上的线性递推关系。
The syndrome arrays are discussed in detail which are employed in decoding of a class of algebraic geometric codes and the linear recurring relations on that.
最后得出结论,投影几何ld P C码将有可能作为下一代无线通信系统的一项关键技术被广泛采用。
Finally a conclusion is made that projective geometry LDPC codes may be adopted as one of the key technologies in the next wireless communication systems.
本文采用几何的方法对循环码进行了研究。
本文的第二部分首先给出了射影系统的概念并且描述了线性码和射影系统之间的等价性,因而我们就可以用几何语言给出线性码一个新的描述。
In the first, the projective system was given in section two, and the equivalence between linear codes and projective was proofed. So we can use geometric language to describe linear codes.
另外,证明了空时码的几何一致性并使用该特性大大地减少了空时码搜索的复杂度。
Furthermore, geometrical uniformity of STC is utilized to reduce the complexity of code search greatly.
利用射影几何方法在小缺陷码中,NMDS码是链条件码;
利用射影几何方法在小缺陷码中,NMDS码是链条件码;
应用推荐