本文给出了求解非线性方程组问题的一种有效方法,称为凝聚函数法。
This paper presents a very efficient method, referred to as the aggregate function method, for solving nonlinear equations.
利用凝聚函数一致逼近非光滑极大值函数的性质,将非线性互补问题转化为参数化光滑方程组。
By using a smooth aggregate function to approximate the non-smooth max-type function, nonlinear complementarity problem can be treated as a family of parameterized smooth equations.
定义了偏凝聚函数,并验证其正确性,然后将结果推广到多输入多输出线性系统,最后简述其应用。
The partial coherence function is defined and its correctness has been verified. Then this result is extended to the linear system of multi-input and multi-output. Finally, its applications...
研究了金属预成形设计中的形状优化设计问题及相应的求解算法,并讨论了凝聚函数在这类问题中的应用。
This paper addresses the shape optimization formulation for metal preform design problem, as well as the corresponding solution techniques.
研究了金属预成形设计中的形状优化设计问题及相应的求解算法,并讨论了凝聚函数在这类问题中的应用。
Optimal preform design is the evolution of preform design through using optimization algorithms and is widely studied recently.
利用凝聚函数求出个体的约束违背值,在选择中不仅考虑适应度值而且考虑约束违背值,使有潜力的个体优先被选择。
This reproduction considers both the fitness values and constraint function values calculated by surrogate function, which ensures potential designs to be chosen preferentially.
导致两段函数和折点形成的主要原因是在辐射能到达凝聚相表面之前部分辐射能已经发生了损失。
One of main reason induced a piece - wise function and the break point is the loss of radiant energy before the radiant energy reaches the surface of condensed phase.
气相的单原子,所以我们不需要再,处理功函数的问题,以及和凝聚态相关的能量问题。
Gas phase single atom. So we don't have to deal with work function or any kind of energies associated with some condensed form of matter.
此外,隧道效应的存在对驻波激光场与凝聚原子构成的体系的态函数和能谱等一些动力学性质都有明显影响。
Moreover, the present result manifests that the tunneling effect can obviously affect the dynamics properties such as wave function, energy spectrum of the atom-standing wave laser field system.
提出了一种求解线性规划问题的新方法:利用K—T条件及KS函数的凝聚特性,将多约束线性规划问题凝聚为单约束优化问题进行求解。
Using K-T condition and the aggregation properties of KS function, a multi-constraints linear programming problem is become a single constraint linear programming problem.
提出了一种求解线性规划问题的新方法:利用K—T条件及KS函数的凝聚特性,将多约束线性规划问题凝聚为单约束优化问题进行求解。
Using K-T condition and the aggregation properties of KS function, a multi-constraints linear programming problem is become a single constraint linear programming problem.
应用推荐