这个递归函数能很好地工作,不过它有一个主要的缺点 ——递归的每一次迭代都要为the-string传递相同的值。
This recursive function works fine, but it has one main shortcoming -- every iteration of the recursion will be passing the same value for the-string.
使用函数odbc_result,该函数接受结果集和列名称(字符串形式),并返回行迭代程序所指向的行中的单元值。
Use the function odbc_result , which takes in a result set and a column name (as a string) and returns the cell value within the row that the row iterator points to.
利用此迭代函数系统构造了一类分形插值曲面,并做了若干数值实验。
Using this IFS we construct a kind of fractal interpolation surface, and make some experiment.
下面的函数并不完全相同,它基本上迭代列的动态列表,检索的列值,并返回连接后的字符串。
The following function does exactly the same, it basically iterates over the dynamic list of columns, retrieve the column values and returns the concatenated string.
首先证明二元插值函数的不定积分也是由迭代函数系迭代生成的,并得到了其迭代函数系。
At first, the indefinite integral of binary fractal interpolating function generated by IFS is proved, and its IFS is given.
本文探讨迭代函数和初始值对迭代过程的影响,从而给出选取迭代函数和初始值的方法和原则,以建立一种好的迭代格式。
This paper discusses how the iterative function and starting value influence the iterative process, thus giving methods and principiums to establish a good iterative formula.
通过分形理论中分形插值运算来构造迭代函数系统,并对其损伤裂纹进行了预测。
Iterative function system was constructed by fractal interpolation operation and the fracture cracks were predicted.
带插值小波包是根据基插值函数建立的迭代函数序列进行伸缩平移的空间序列。
M-band interpolatory wavelet packets is a sequence space spanned by dilation translates of a iterate function sequence obtained by a cardinal interpolation function.
当价值函数的值越小时,迭代点越靠近最优解。
The smaller the value of the merit function is, the closer the iteration point is to the solution.
利用此迭代函数系统构造了一类分形插值曲面,并做了若干数值实验。
Using this IFS we construct a kind of fractal interpolation surface, and m.
在策略迭代结强化学习方法的值函数逼近过程中,基函数的合理选择直接影响方法的性能。
An appropriate selection of basis function directly in? Uences the learning performance of a policy iteration method during the value function approximation.
利用此迭代函数系统构造了一类分形插值曲面,并做了若干数值实验。
Using this IFS we construct a kind of fractal interpolation surface, and m...
以问题空间上启发值的分布为启发函数的特征来分析迭代延伸A* (IDA~** )的时间复杂度,使启发函数的作用相当于减小有效的搜索深度。
The running time of iterative-deepening-A~*(IDA~*) algorithm is analyzed with heuristic function of the problem space and the effect of the function is to reduce the actual search depth.
第二章,我们研究了迭代级整函数结合于导数与重值的辐角分布,得到了相应的结果。
In chapter 2, we investigated the argument distribution of the multiple value and the derived functions of integral functions with iterated order, and gain similar result.
第二章,我们研究了迭代级整函数结合于导数与重值的辐角分布,得到了相应的结果。
In chapter 2, we investigated the argument distribution of the multiple value and the derived functions of integral functions with iterated order, and gain similar result.
应用推荐