希望您能喜欢阅读有关倒排表的资料。
我大约是在1985年开始使用倒排表。
实际上,这个规则是倒排表惟一的巧妙之处。
In fact, this rule is the only tricky thing about inversion lists!
在Perl中实现倒排表是既有趣又麻烦的。
Implementing inversion lists in Perl was both fun and vexing.
那么什么是倒排表?
接下来是invlist函数,用于生成倒排表。
Next comes the invlist function, which produces inversion lists.
对倒排表的最好描述是:它是对比特串的压缩表示。
Inversion lists are best described as a condensed summary of a bit string.
倒排表将存储一个由三个数字构成的序列:0,3,5。
An inversion list would store a list of three Numbers: 0, 3, 5.
倒排表和按出现长度进行的简单数据编码相似,但也有所不同。
They are similar to a simple run-length encoding of data, though there are some differences.
迅雷资源搜索引擎索引器的实现,主要是如何建立中文分词和倒排表。
The implement of XunLei indexer, it mainly include how to create Chinese participle and reverse table.
提出了一种基于倒排表的索引,能很好地支持文档结构和内容的动态更新。
Proposes an inverted index structure that supports dynamic update, including both structure and content updates.
在Unicode编程中,基本上都是用倒排表来存储二进制属性和字符序列。
In Unicode programming, inversion lists are essential for storing binary properties of character ranges.
如果我们要构建一个只用于查找的倒排表,我们就不需要存储最后一比特的位置。
If we are building an inversion list for searching only, we do not need to store the position of the last bit.
我不了解以前人们是怎样实现倒排表的,不过它很简单,应该曾被多种方法实现过。
I don't know of any pre-existing implementations, but it is simple enough that it could well have been developed multiple times.
还可以有更好的压缩算法;这不过是为了证明倒排表可以用于比单个比特更宽的通道。
There are much better compression algorithms; this is just a demonstration of how inversion lists can be applied to wider channels than a single bit string.
表面看来,倒排表并不适合用于规则数据,但是实际上它很容易扩展用以处理规则数据。
It may seem that inversion lists are useless for regular data, but in fact they can be easily extended to handle regular data.
在某些应用中,比如unicode字符序列,使用倒排表可以为您节省大量的时间,降低工作难度。
For specific applications such as Unicode character ranges, inversion lists can save you a lot of time and effort.
与invlist函数相对应的函数是data _ from _ invlist,用来从倒排表中生成原始数据。
The necessary companion to the invlist function is data_from_invlist , which generates the original data back from the inversion list.
不过,如果我们想要通过倒排表构造出原始的数据,我们必须要知道在哪里停止增加新的比特,这时就需要存储最后一比特的位置。
If, however, we want to construct the full original data, we need to know where to stop adding bits.
不过,如果我们想要通过倒排表构造出原始的数据,我们必须要知道在哪里停止增加新的比特,这时就需要存储最后一比特的位置。
If, however, we want to construct the full original data, we need to know where to stop adding bits.
应用推荐