这些优异的壁条件导致了多发弹丸注入、低混杂波电流驱动(LHCD)和长脉冲放电等物理实验的重大进展。
The excellent wall conditions lead to great progresses in the experiments such as the multi-shoot pellet injection, LHCD and long pulse discharges.
本文研究了由于欧姆电场与驱动电流的低杂波场相互作用造成的影响等离子体电导的两个物理机制。
By considering the interaction between the Ohmic field and the lower-hybrid current driven (LHCD) field, we find two mechanisms affecting the plasma conductivity.
用低杂波的可近性条件、参量不稳定性条件和功率耦合谱分析了低杂波电流驱动(LHCD)。
The conditions of wave accessibility and parameter decay instability are used to analyse the density limit in LHCD.
考虑了低混杂波电流驱动时非线性效应的波谱展宽、附加电导率以及电子和离子的温度变化。
The nonlinear broadening of spectrum, the RF-induced-tail producing additional conductivity, and time evolution of average electron and ion temperatures are taken into account.
在优化低杂波电流驱动实验参数的条件下,等离子体密度、温度分布发生了理想的变化。
In the optimal LHCD condition, profiles of plasma density and temperatures have been changed as expected.
应用改进后的程序详细计算了不同径向扩散系数对低杂波电流驱动剖面分布的影响。
The modified code is used to calculate the radial diffusion effect on the lower hybrid current drive (LHCD) profile.
在一定条件下低混杂波电流驱动可以改善等离子体粒子约束。
The impurity transport is anomalous. the particle confinement could be improved in a certain condition during the low hybrid current drive.
在一定条件下低混杂波电流驱动可以改善等离子体粒子约束。
The impurity transport is anomalous. the particle confinement could be improved in a certain condition during the low hybrid current drive.
应用推荐