本文从互感支路的伏安关系出发,导出了多线圈耦合网络具有理想电流源支路时的回路方程。
Based on the V-I characteristics of the mutual inductance branch, the loop equations of the mutual inductance circuit with the branch consisted of ideal current source along are derived.
提供了一种新的方法,用于建立深亚微米电路中MOST的伏安特性方程。
We present a novel method, used to build the I-V characteristic equations of the MOSTs in the deep sub-micron circuits.
该方法是将互感线路的伏安特性方程转化为积分形式,并采用了最小二乘法求解方程组,同时得出各线路的零序自阻抗及线路间的零序互阻抗。
The new method turned the volt-ampere characteristic equation of transmission lines into an integral form, then used least square method to solve the equations and got the zero-sequence parameters.
该方法是将互感线路的伏安特性方程转化为积分形式,并采用了最小二乘法求解方程组,同时得出各线路的零序自阻抗及线路间的零序互阻抗。
The new method turned the volt - ampere characteristic equation of transmission lines into an integral form, then used least square method to solve the equations and got the zero-sequence parameters.
该方法是将互感线路的伏安特性方程转化为积分形式,并采用了最小二乘法求解方程组,同时得出各线路的零序自阻抗及线路间的零序互阻抗。
The new method turned the volt - ampere characteristic equation of transmission lines into an integral form, then used least square method to solve the equations and got the zero-sequence parameters.
应用推荐