代数学,据约翰·德比夏尔所说,可以追溯到古巴比伦人留在楔形文字石碑上的简单的代数问题.
THE roots of algebra, asJohn Derbyshire tells us, go back to the ancient world: the Babylonians leftcuneiform tablets showing simple algebraic problems.
它体现了代数学中研究其他代数结构的基本思路。
It reflects the algebra in other algebraic structure of the basic idea.
三世纪的丢番图的杰出贡献之一,就是把希腊代数学简化,开创了简化代数。
Three century Diophantine one of the outstanding contribution that Greece algebra simplify, simplify algebraic created.
而群论是代数学中最古老最丰富的分支之一,是近世代数的基础。
But the group theory is in the algebra is most ancient one of richest branches, is the modern algebra foundation.
“数学符号”贯穿于近代数学和现代数学之中,它是数学高度抽象的表现。
"Mathematical symbols" runs through modem mathematics and modem mathematics, it is highly abstract mathematical performance.
代数学的拓扑是透过代数空间的全球特性的研究。
Algebraic topology is the study of the global properties of Spaces by means of algebra.
现代数学在21世纪会变得更加重要,应该将现代数学基础定位为高师数学教育中的主干课程,这是时代的需要也是提高中学数学教学水平和教育质量的需要。
Modern mathematics would be more and more important during 21st century. We ought to consider the modern mathematics as the main course in the mathematics teaching of normal university.
数学从萌芽时期开始,历经了初等数学时期、变量数学时期、近代数学时期和现代数学时期。人们已经从数学的内容、表现形式、作用等方面为研究数学的特点提供了框架。
People had already provided the frame for the research of mathematical characteristics from the aspects of the content, forms of expression, the role and the research procedure of mathematics.
十九世纪的代数学知识体系庞大,它包含置换群、矩阵、代数数论、代数几何等多个分支。
In the nineteenth century, the system of algebraic knowledge is enormous, which contains the permutation group, matrix, algebraic number theory, algebraic geometry and other branches.
代数表示论是上世纪七十年代初兴起的代数学的一个新的分支,它的基本内容是研究环与代数的结构。
Algebra representation theory is a new algebraic branch arising in 1970s whose researches mainly focuses on rings and algebraic structures.
向量是近代数学最基本的概念之一,它具有代数形式和几何形式的“双重身份”,是沟通几何、代数、三角等内容的桥梁。
The vector is one of the most basic concepts in modern mathematics, it has a "dual status" - "Algebra form" and "geometry form". It is a bridge to link up the contents of geometry.
近代数学的一些学科,如代数结构理论与泛函分析可以在矩阵论中寻找到它们的根源。
Some subjects of modern mathematics, such as the algebraic structure theory and functional analysis, would be found in the Matrix theory.
模的理论是现代数学中越来越重要的工具,它统一了许多数学结构,也是研究交换代数的基本工具。
The theory of modules is increasingly important in modern mathematics. It unifies many mathematical structures, and is the basic tools in commutative algebra.
代数型是数学中重要的基本概念,代数不变量是代数学的重要研究对象之一,也是数学与其它领域研究与应用的一个重要工具。
The conventional studies of algebraic invariants and geometrical properties are that these invariants are derived for planar objects using points, lines from one single image.
代数型是数学中重要的基本概念,代数不变量是代数学的重要研究对象之一,也是数学与其它领域研究与应用的一个重要工具。
The conventional studies of algebraic invariants and geometrical properties are that these invariants are derived for planar objects using points, lines from one single image.
应用推荐