代数多重网格法可以避免这些缺陷。
第一部分为块代数多重网格算法的研究。
数值实验表明这种代数多重网格法对求解二次拉格朗日有限元方程是健壮和有效的。
Numerical experiments show our AMG method is robust and efficient for solving the quadratic Lagrangian finite element system.
对两个存在大的电性差异的模型进行了模拟计算,以验证代数多重网格法的收敛效率。
Two models with high conductivity contrast are used to demonstrate convergence and efficiency of the AMG method.
本文主要对求解二维弹性力学问题高次有限元方程的代数多重网格(amg)方法进行了讨论与探讨。
In this paper, we discussed to Algebraic Multigrid (AMG) method for higher-order finite element equations in two dimensional linear elasticity.
本文针对带有间断系数的三维椭圆问题,讨论任意四面体剖分下的二次拉格朗日有限元方程的代数多重网格法。
In this paper, we consider a quadratic Lagrangian finite element equation arising from discretizations of 3d elliptic problem with jump coefficients under any tetrahedral partition.
针对非结构化网格上迭代收敛速度会逐渐减慢的特点,引入了多重网格求解技术,采用了其中效率较高的代数多重网格方法对离散方程进行求解。
To overcome the reduced convergence speed of iteration method, multigrid method is introduced and algebraic multigrid is adopted to solve discretized equations because of its higher effectiveness.
接着对速度空间提出一种类似的网格转移算子,并给出W循环的多重网格法来解对应的代数方程组。
Then a similar intergrid transfer operator is given for the spaces of velocity, and the W-cycle multigrid method is presented for solving the algebraic equations.
接着对速度空间提出一种类似的网格转移算子,并给出W循环的多重网格法来解对应的代数方程组。
Then a similar intergrid transfer operator is given for the spaces of velocity, and the W-cycle multigrid method is presented for solving the algebraic equations.
应用推荐