文中的精度分析和稳定性分析表明该差分格式在等步长条件下具有二阶精度、无条件稳定。
Accuracy analysis and stability analysis indicate that this scheme has two order accuracy and is unconditionally stable when grid size is constant.
提出了二阶精度隐式矢通量单步差分格式并用来求解跨压器进气道、叶栅的跨音流场。
An implicit flux vector splitting form in one-step with second-order accuracy was proposed for solving the transonic flow fields of air channels and cascades of diffusers.
与普通的二阶中心差分格式相比,该格式具有在不增加存储量的前提下提高计算精度的优点。
It is shown that the new scheme has the virtue of high precision without increasing memory requirement compared to two-order center scheme.
给出非线性方程的二阶向后差分格式稳定性、误差估计。 (4)给出二阶卷积积分的权重。
Given the stability, error estimate and numerical experiments for the nonlinear equation of second order backward difference(4)Given the weighted of second order convolution quadrature.
本文给出了数值求解一类偏积分微分方程的二阶全离散差分格式。
In this paper, the second order fully discrete difference method for a partial integro-differential equation is considered.
改进了原模式的盐度差分格式和方程,采用二阶精度差分格式并引入了物理扩散项。
Modifying the salinity difference format and salinity equations of the original model, the present model USES the second-order accurate difference format and introduces the term of physical diffusion.
普通的迎风差分格式只有一阶精度,修正的迎风差分格式可以把空间的计算精度提高到二阶。
This method could efficiently overcome the numerical oscillation and improve the calculation accuracy in spatial to second order.
由于对流为主的弥散方程具有双曲性质,中心差分格式虽然关于空间步长具有二阶精度,但会产生数值弥散和非物理力学特性的数值振荡,使数值模拟失真。
Due to the hyperbolic properties of convection-dominate dispersion equations, the central difference formula often cause numerical dispersion and oscillation even it has two-order precision in space.
由于对流为主的弥散方程具有双曲性质,中心差分格式虽然关于空间步长具有二阶精度,但会产生数值弥散和非物理力学特性的数值振荡,使数值模拟失真。
Due to the hyperbolic properties of convection-dominate dispersion equations, the central difference formula often cause numerical dispersion and oscillation even it has two-order precision in space.
应用推荐