针对图像在获取和传输过程中易受各种噪声污染的事实,为了提高支持向量机对噪声图像的分割性能,提出了模糊权重支持向量机。
In order to improve the segmentation performance of images corrupted by impulse noise and Gaussian noise, fuzzy weighted support vector machine is proposed.
为了提高支持向量机(SVM)的识别性能,提出了在常用内核的基础上构造一个组合内核函数,然后用拟牛顿算法对其超参数进行优化的方法。
To improve the performance of support vector machines (SVM), a hybrid kernel is constructed from the existing common kernels, and the hyper-parameters are optimized by using a quasi-Newton method.
为了提高支持向量机(SVM)的识别性能,提出了在常用内核的基础上构造一个组合内核函数,然后用拟牛顿算法对其超参数进行优化的方法。
To improve the performance of support vector machines (SVM), a hybrid kernel is constructed from the existing common kernels, and the hyper-parameters are optimized by using a quasi-Newton method.
应用推荐