研究了不精确牛顿法的局部收敛性态。
在已有的基础上探讨了它的半局部收敛性,利用强函数原理,在一定的条件下给出并证明不精确牛顿法的半局部收敛性。
There have many papers for its local convergence, This paper probes into the semi-local convergence using a majorant function principle on some weak condition.
因果关系也许会受到不精确的测量法所影响。
Causal relationships may also be affected by relatively imprecise measurements.
从应用角度出发,首先,将约束变尺度法改进为一般约束条件,通过适当选择差商形式和对一维不精确线性搜索方法的修正,扩大了该方法的适用范围。
Through the suitable selection of difference quotient and correction of the one-dimension inaccuracy linear searching, scope of the improved method is extended.
该方法的外迭代为经典牛顿法,内迭代为用GMRES法不精确求解雅可比方程。
The outer iteration of this method is the classical Newton method, and the inner iteration is using GMRES to solve Jacobi equations inexactly.
针对不精确的模型,本文提出了基于部分对消思想的重复控制器设计法。
For an inaccurate mathematical model of inverter, a new and effective RC design method, i. e. the limited cancellation method is proposed.
针对不精确的模型,本文提出了基于部分对消思想的重复控制器设计法。
For an inaccurate mathematical model of inverter, a new and effective RC design method, i. e. the limited cancellation method is proposed.
应用推荐