提供了一个函数和一个输入,找到不动点。
在迭代过程中有数据集汇聚成单点,叫做吸性不动点。
There are data sets in iteration that converge to single points, called attractive fixed points.
主要讨论了可交换映射的公共不动点问题。
Some problems about common fixed points of commuting mapping were studied.
我们真正需要的是通过某种途径计算这个函数的不动点。
What we really want is some way of calculating the fixed point of such a function.
目的分析研究一类更广的序映射不动点问题。
Aim To analyze a class of generalized fixed-point problems of ordered mappings.
这是真的,证据来自不动点原理的一种运用,一年前我曾探讨过它。
It is true, and the proof comes as an application of a fixed point theorem which I discussed a year ago.
本文在完备的度量空间中给出了一类顺序映射的不动点及其性质。
This paper presents fixed points of a kind of Sequential mapping and its properties.
然后应用一阶低通滤波器法分别研究了这两类不动点的控制问题。
Next, a low-pass first order filter is applied to stabilize the two types of fixed points.
并研究了该类映象不动点的存在性问题,给出其对最近点问题的应用。
As application, we study the existence problem of nearest point for this kind of mappings.
本文给出了度量空间中某些同胚非扩张映射不动点存在的充分必要条件。
In this paper, some results on fixed points of homeomorphic maps in metric Spaces have been obtained.
时间周期脉冲方法则能实现系统时间周期空间不动点和空间准周期的控制。
The temporal periodic pulse can stabilize the system to spatial fixed point with temporal periodicity and spatial quasiperiodicity.
本文定义了两个函数复合可交换的概念,并证明了函数列存在公共不动点。
We give the commutative of compound function definition and prove the existence of common fixed points of a function sequence.
连续函数的不动点是指称语义的一个重要内容,它刻画了程序的计算性质。
The fixed point of continuous function is an important content in denotational semantics, which specifies the computing properties of programs.
利用锥理论给出了随机1-集压缩算子的随机不动点指数的一些计算方法。
Some new methods of computation for random fixed point index of random 1-set-constractive operator.
在某些条件下,利用不动点方法和平均值法证明了这类方程系具有概自守解。
Under certain condition, these systems are proved by fixed point method and mean value method to have almost-automorphic solution.
所用的技巧主要是建立在线性抛物系统的唯一连续性和不动点方法的基础上。
The techniques used here are based on the unique continuation of linear parabolic systems arid the fixed point theorem.
不动点迭代方法是求解非线性方程近似根的一个重要方法,其应用非常广泛。
Fixed-Point Iteration method is an important technique to solve nonlinear equations for calculating approximate roots and applied widely.
通过利用不动点指数理论及一个新的三解定理,得到了边值问题多个正解的存在性。
By using the fixed point theory and a new three-solution theorems, the existence of multiple solutions of the boundary value problem was obtained.
根据理论分析结果,调节电路的参数,可以成功地看到不动点、倍周期、混沌现象。
According to the theoretical results, we adjust the circuit parameters and then can find the phenomena of fixed point, periodic attractor, and chaos.
利用不动点理论,给出了一类半线性微分方程有界的调和伪概周期解存在的充分条件。
Using fixed point theorems, in this paper we give sufficient conditions of the existence of bounded mild pseudo almost periodic solution for some semilinear differential equations.
本文主要研究了弱内向1 -集压缩映象和单调算子的不动点的存在性定理及其应用。
In this thesis, we mainly investigate the existences of fixed points for weakly inward 1-set-contraction mappings and monotone operators with their applications.
本文在紧度量空间中,讨论了压缩型映象的不动点问题,推广和改进了某些已知结果。
The paper is to discuss the fixed point theorems for contractive type mappings in compact matric spaces, the results improve and extend the results of .
本文利用不动点理论,给出了一类非线性延迟积分方程正的概周期型解的存在性条件。
In this paper, we give the conditions of existence of positive almost periodic type solutions for some nonlinear delay integral equations.
利用一个著名的不动点指标定理,获得了该方程周期正解的存在性、多重性和不存在性。
By using a well-known fixed point index theorem, we obtain the existence, multiplicity and nonexistence of positive periodic solution(s) to this equation.
本文在乘积空间中讨论一类非线性映象的不动点的存在性,得到了一些新的不动点定理。
In this paper, we discuss the existence of fixed point for nonlinear mappings in product Spaces and give some new fixed point theorems.
本文通过研究帐篷映射的迭代、不动点、周期点等情况,介绍了帐篷映射的动力学行为。
By discussing iteration, fixed points and period points of Tent map, this paper deals with the dynamical behaviors of Tent map.
在第8章,我们将讨论两个函数极小极大不等式及其对变分不等式和不动点理论的应用。
In Section 8, we shall discuss two-function minimax inequalities and their applications to variational inequalities and to fixed-point theory.
然后找出重整化变换的不动点,在所有不动点中那些不稳定不动点是发生相变的临界点。
These transformations are made up of renormalization group. Then the fixed point of transformation can be found, among which those unstable ones are critical points of phase transition.
利用锥理论和单调迭代技巧讨论了一类逐点次连续的混合单调算子不动点的存在性问题。
Cone theory and monotone iterative technique are used to discuss the existence for a kind of mixed monotone operators with pointwise sub-continuity.
使用近似不动点技术,采用摄动迭代方法,目的是证明利普希茨伪紧缩映射序列的收敛性。
The object is to introduce a perturbed iteration method for proving the convergence of sequence of Lipschitzian pseudocontractive mapping using approximate fixed point technique.
应用推荐