在一维或二维空间,引力波无法存在。
Gravitational waves can't exist in one or two-dimensional space.
所以我们称之为一维晶体。
这一步与寻找每一维使用的表非常相似。
This step is very similar to finding the tables used by each of the dimensions.
这是一维问题,作为热身。
宇宙中的一切是由振荡的一维弦构成的吗?
Is everything in the universe made up of vibrating one-dimensional strings?
记得吗,一维的弹簧,周期和振幅,无关?
Remember the one-dimensional spring that we had a period which was independent of the amplitude?
寻找每一维中使用的表。
,我们把三维运动,分解成三个,一维运动。
the three-dimensional motion we have cut into three one-dimensional motions.
首先是一个一维案例。
它将是一维的晶体。
不过,一个一维ca没有最右(或者最左)细胞。
However, a one-dimensional CA has no right-most (or left-most) cell.
保持简单的设计和使用一维数组总是更好的做法。
It is always better to keep the design simple and use single-dimensional arrays.
这一维基页面是6月29日做改动的。
举个一维的例子。
因为CA是一维的,所以可以将它想像为一行细胞。
Because the ca is one-dimensional, you can think of it as a row of cells.
运行时分析扩展了一维标准软件开发行为:质量关注。
Runtime analysis expands standard software development activities along one key dimension: concern for quality.
假设有一物体,沿直线运动,我们把它称为一维运动。
I have a motion of an object along a straight line we'll call that one-dimensional motion.
最后一维(所有内容如何关联)是以空间形式暗示的。
The last dimension, how everything relates, is implied spatially.
一个激进的方式是,切片多维数据为平行的一维数组。
A somewhat more radical idea is to slice up multidimensional arrays into parallel single one-dimension arrays.
图1中操作的名字实质上是一维签名空间中的一个值。
The name of the operation in Figure 1 essentially yields a value in a one-dimensional signature space.
不像气垫导轨那样被束缚在一维,只能来来回回移动装置。
You are not stuck, like you are there, to one dimension of going back and forth on what we call the air track.
它是一个二维问题,因为我们已经发现,目前,它只是一维的。
And we'll make it a two-dimensional problem, because we have seen only one-dimensional problems now.
每个平面由256个一维的行组成,并且每个行有256个单元。
Each plane consists of 256 one-dimensional rows and each row has 256 cells.
这是个一维的图:竖直方向上的是(挂钟式)时间,单位为毫秒。
This diagram is one dimensional: vertically we have the (wall clock) time, in milliseconds.
跟我刚才做的相似,但是问题更简单,因为弹力是,完全一维的。
Very similar to what I just did, but now it is a simpler problem, because a spring is exactly one-dimensional.
上一课的方程我们,已经比较熟了,常数加速度的,一维运动方程。
We know the equations so well from our last lecture from one-dimensional motion with constant acceleration.
在这个例子中,增加的注释加入了另一维,从而成为三维签名空间。
In this instance, the addition of annotation adds another dimension, resulting in a three-dimensional signature space.
在这儿,只是在一个二维曲面上做积分,这里是一维曲线。
Here, you integrate only over a two-dimensional surface, and here, only a one-dimensional curve.
更简单的一维datagrid可以从select元素获得数据。
A simpler one-dimensional datagrid might be populated by a select element.
spreadsheet使用者都会拿它去做简单的一维投票统计。
应用推荐