本文研究非齐次m阶马氏信源的渐近均分割性。
In this paper, we study the asymptotic equipartition property (AEP) form order nonhomogeneous Markov information source.
本文讨论了一类最简单的遍历马氏信源的误差界估计问题。
In this paper, the problem of the estimation of the error bound for a class of simplest Markov sources is discussed.
特别是对于所谓的配称马氏信源,我们确定了最优码的误差指数,结果也比较简单。
In a special case, the error exponent of the best code is determined completely, and the result is not too complex.
得出了若干任意信源、m阶马氏信源、无记忆信源的渐进均匀分割性定理,并将已有的关于离散信源的结果进行了推广。
As corollaries, some asymptotic equipartition property theorems for arbitrary information source, m-order Markov information source, and non-memory information source were obtained.
得出了若干任意信源、m阶马氏信源、无记忆信源的渐进均匀分割性定理,并将已有的关于离散信源的结果进行了推广。
As corollaries, some Shannon-Mcmillan theorems for arbitrary information source, m-order Markov information source are obtained and some results for the discrete information source are extended.
得出了若干任意信源、m阶马氏信源、无记忆信源的渐进均匀分割性定理,并将已有的关于离散信源的结果进行了推广。
As corollaries, some Shannon-Mcmillan theorems for arbitrary information source, m-order Markov information source are obtained and some results for the discrete information source are extended.
应用推荐