从系统的哈密顿量出发,利用玻恩马尔可夫近似,推导出了原子的光学布洛赫方程。
From the Hamiltonian of the atomic system, making use of Born-Markoff approximation, the optical Bloch equations are derived.
在本文中我们利用投影算符技巧通过刘维方程推导了系统约化密度主方程,这种方法特别适合于赝非马尔可夫的库场情况。
The master equations of a reduced system density operator , by means of the Liouville equation and the projection operators techniques have been derived.
本文推导了三个全同的谐振子系统与一个非马尔可夫库相互作用时满足的非马尔可夫主方程,并在此基础上讨论了系统的三模纠缠和压缩。
We do not make the rotating-wave and markovian approximations on the interaction Hamiltonian and treat the environment as a non-markovian reservoir to the oscillators.
本文对离散型f—随机变量给出了一种严格的数学定义,由此引出了F—马尔可夫链,并证明了切普曼—哥尔莫哥洛夫方程仍成立。
This paper gives a strict mathematical definition for discrete's mode of f-random variable. It follows f-markovian chain and pro ves that the equation of chapman-holds.
本文对离散型f—随机变量给出了一种严格的数学定义,由此引出了F—马尔可夫链,并证明了切普曼—哥尔莫哥洛夫方程仍成立。
This paper gives a strict mathematical definition for discrete's mode of f-random variable. It follows f-markovian chain and pro ves that the equation of chapman-holds.
应用推荐