本文论述了不同设防烈度及场地条件,建筑高度和自重,以及顶点相对位移限值等因素与抗震墙用量之间的关系。
The factors relating to shear wall discussed in this paper are seismic intensity, site soil condition, weight and height of building, and top displacement of structure etc.
我们将给出一个类似的圆判据,它说,所有顶点或边系统的某些频域条件可保证整个不确定系统是绝对稳定的。
A circle-like criterion will be given it says that some frequency-domain conditions of all vertex or edge systems guarantee the absolute stability of the whole uncertain system.
在给定分段节点横坐标的条件下,通过确定系数矩阵和反求曲线顶点,基于最小二乘法推导出最优节点的纵坐标公式。
The optimum knots ordinate formula in the least square sense is derived by computing coefficient matrix and curve vertexes under the specified subsection knots abscissas conditions.
在此基础上计算了弹性无孔洞钢拱在不同荷载、不同约束、不同截面尺寸等条件下的极限承载力和顶点竖向位移。
Then the ultimate load-carrying capacity and the vertical top displacement of elastic steel arches are computed for different restrictions, different loads and different section sizes.
联系图的顶点划分和四边形2因子的条件,本文给出了新的上可嵌入的图类。
Combining with the condition of C-partition and tetragon 2-factor, we give new classes of upper-embeddable graphs.
本文研究ID-因子临界图的度和条件,得到使得图G是ID-因子临界图的任意两个不相邻的顶点的度和的下界,同时说明这些结果是最好可能的。
Degree sum conditions of ID-factor-critical graphs are studied. A lower bound for the degree sum of any two nonadjacent vertices such that G is ID-factor-critical is obtained, and the bound is sharp.
考查了线性组合方程的解在特征角面顶点的值,并给出了柯西问题解对初值的必要条件。
The value of solution for the linear equation at the conic point is derived, and the necessary condition satisfied by the Cauchy's problem solution is given.
构造边界条件反求得控制顶点。构造出三次NURBS曲线的参数方程。
Boundary conditions are constructed to get the control points and the equation of 3-order NURBS curved profile is acquired.
构造边界条件反求得控制顶点。构造出三次NURBS曲线的参数方程。
Boundary conditions are constructed to get the control points and the equation of 3-order NURBS curved profile is acquired.
应用推荐