引进了拟块有向边覆盖对角占优矩阵概念,给出了新的矩阵非奇异判定定理和特征值分布定理。
We introduced the concept of block directed edge cover diagonal quasi dominant matrix, obtained a new nonsingularity criteria for matrices and distribution theorem on eigenvalues of matrix.
如何更换一个矩阵的非对角线元素?
利用矩阵的块对角占优、广义严格对角占优以及非奇异m -矩阵的性质及理论,给出了矩阵非奇异的判定条件,拓展了矩阵非奇异性的判定准则。
Based on the properties of block diagonally dominant matrices, generalized strictly diagonally dominant matrices and nonsingular M-matrices. We give the new condition of nonsingular matrices.
运用负本征值理论,探讨了非对角无序、维数效应对低维无序系统电子结构的影响,研究表明,非对角无序和维数效应对低维无序系统电子结构的影响很大。
Based on the negative eigenvalue theory we discuss the non-diagonal disorder and dimensional effects for the electronic structure in low-dimensional disordered systems.
针对高斯白噪声中的二维角度估计问题,提出一种非酉联合对角化方法。
A non-unitary joint diagonalization method was proposed to estimate the two-dimension(2D) direction of arrival(DOA) embedded in additive Gaussian noise.
海森矩阵被应用于牛顿法解决的大规模优化问题。混合偏导数和海森矩阵的对称性海森矩阵的混合偏导数是海森矩阵非主对角线上的元素。
Hessian matrices are used in large-scale optimization problems within Newton-type methods because they are the coefficient of the quadratic term of a local Taylor expansion of a function.
海森矩阵被应用于牛顿法解决的大规模优化问题。混合偏导数和海森矩阵的对称性海森矩阵的混合偏导数是海森矩阵非主对角线上的元素。
Hessian matrices are used in large-scale optimization problems within Newton-type methods because they are the coefficient of the quadratic term of a local Taylor expansion of a function.
应用推荐