在研究这类问题时,常用的理论方法有转移矩阵法、组合解法、重整化群方法及图形展开法等。
The usual ways to study the subject are the transfer-matrix method, combination solution, the renormalization-group technique, and graphic expansion, and so forth.
将结合重整化群和盒计数方法,探讨对复杂网络的这三个特征的产生机理和它们之间相互关系的内在机制。
The paper will probe into origins of three features of complex networks and underlying mechanism of their relation using renormalization and box-covering method.
用实空间中的重整化群理论,对二维正方形格点上的高分子模型自踪迹规避链进行了求解。
In this article, the critical exponents of the polymer model SAT in two dimensional square lattice have been studied with the real space renormalization theory.
本文用实空间重整化群方法,计算了层状三角形晶格点阵的临界指数,并讨论了各向异性对临界指数的影响。
In this paper used position space renormalization group method calculated critical index of threecornered lattice of majority layter. and discussed the affect of anisotropy to critical index.
利用逾渗和重整化群理论初步分析了脆性岩石的临界损伤破坏行为,指示性地得出了岩石的临界破坏概率。
The paper analyzed the critical failure action and brittle rock with a penetration and reestablishment group theory. The critical failure rate of the rock was obtained.
本文利用实空间重整化群方法对渗流、岩裂、飞蚁模型进行了研究。
The models of percolation, rock fracture and flit ant are studied on the real-space renormalization group approach.
我们利用密度矩阵重整化群方法来研究熵的对数行为。
The method of density matrix renormalization-group is applied to obtain logarithmic behavior of the entropy.
重整化群方法是研究相变的临界现象最有力的工具,它是一种由理论求得分形维数的方法。
Renormalization group method which calculates fractal dimension theoretically is the most useful tool when we study critical phenomena of phase transition.
通过密度矩阵重整化群的方法,我们研究了不同系统中的基态纠缠。
By using the method of density matrix renormalization group, the ground state entanglement in different systems is studied.
在闭合时间路径的实时温度场论的框架下,导出了热重整化群方程。
Thermal Renormalization Group equations are derived in the framework of Closed Time Path formalism in real time temperature field theory.
采用实空间重整化群变换的方法,研究了2维和d(d>2)维X分形晶格上的临界性质。
Using the real-space renormalization group transformation method, critical behavior on two-dimension and d-dimension(d>2) X fractal lattices is studied.
我们将讨论诸如匹配,重整化,算符乘积展开,幂次计数,和重整化群跑动等概念。
Concepts such as matching, renormalization, the operator product expansion, power counting, and running with the renormalization group will be discussed.
威尔逊的数值重整化群方法(NRG)是其中一个很著名的例子,同时也是本论文讨论的中心所在。
Wilson's Numerical Renormalization Group (NRG) method is such a celebrated example, which is also the focus of this thesis.
威尔逊的数值重整化群方法(NRG)是其中一个很著名的例子,同时也是本论文讨论的中心所在。
Wilson's Numerical Renormalization Group (NRG) method is such a celebrated example, which is also the focus of this thesis.
应用推荐