通过语义分析和语义推理,可以充分利用信息资源之间的关系实现相关信息资源检索与语义融合。
By semantic analysis and semantic inference, the relationship among resource could be fully used to implement the relevant information resource retrieval and semantic fusion.
实验系统采用J2EE架构,开发了存储组件、语义查询接口组件、语义分析组件和语义推理组件。
The trial system took J2EE architecture which including storage component, semantic query interface component, semantic analysis component and semantic inference component.
通过语义分析可以理解自然语言语句,并进行深入的知识获取和推理,使计算机能够与人类无障碍的沟通。
By semantic parsing, the natural language sentence can be understood and knowledge acquirement and inference become possible. Consequently computer and human being can communicate freely.
本体知识推理的关键任务是分析语义关系、定义和形式化推理规则并对其优化。
The key task of ontology reasoning is to analyze semantic relationships and to define, formalize and optimize reasoning rules.
系统在语义分析模块中利用语义推理进行检索词的规范和扩展,在语义检索模块通过语义推理挖掘关联隐含知识。
By using semantic inference this prototype system processes the specification and expansion of search keyword in the semantic analysis module and discovers the implicit knowledge.
从语义推理技术入手,主要针对描述逻辑、推理算法和推理机三个方面进行了研究分析。
Starting from the semantic inference technology, the authors research and analyze from three mainly aspects, including description logic, inference algorithm and inference engine.
从语义推理技术入手,主要针对描述逻辑、推理算法和推理机三个方面进行了研究分析。
Starting from the semantic inference technology, the authors research and analyze from three mainly aspects, including description logic, inference algorithm and inference engine.
应用推荐