这是你们要在统计力学中证明的东西,所以我们不用担心这个从何而来。
This is something that you're going to prove in statistical mechanics, and so we're not going to worry about where this comes from.
但是,如果我们知道,物质在固相,液相和气相中所有可能态的能量,统计力学告诉我们,我们可以计算这些相的平衡问题。
But again, if you know all the energies of the possible states, in the solid, in the liquid and the gas, statistical mechanics shows us that we can calculate the equilibrium between those.
所以这些简单的极限的例子,起到重要的作用,在统计力学的简化,和通常的计算中。
So these simpler limiting cases play a huge role in simplifying statistical mechanics and the calculations from them generally.
这是反复出现的在统计力学中,在很多系统中,你会有简化的极限。
And this is something that recurs in statistical mechanics, in an enormous number of systems where you have simplified limits.
尤其是统计力学。
并开始统计力学。
从统计力学角度看,它们就是态和能级。
From a statistical mechanics point of view, it's just states and levels.
思想是你可以,用量子化的能级处理统计力学,就像我们刚才做的。
And the idea that, well, that you could then do the statistical mechanics with quantized levels, just the way we've done it.
这就是统计力学的要做的。
在热力学或者统计力学中。
现在我们知道怎么,算自由能,通过统计力学计。
And now we know how to calculate that from first principles, through statistical mechanics.
那么我们来看看,用统计力学来处理又会发生什么。
So let's see what happens in a statistical mechanical treatment.
比如说理想气体膨胀时的,不是热力学的角度来计算它,现在从统计力学。
For instance, if you look at an expansion of an ideal gas, Not based on thermodynamics, ut based on the statistical mechanics.
换句话说,宏观的热力学性质可以,从微观模型,的统计力学得到。
So in other words, macroscopic thermodynamic properties come straight out of our microscopic model of statistical mechanics.
教授:上一节课我们开始,了一个新的题目,即统计力学。
PROFESSOR: So, last time we started in on a discussion of a new topic, with was statistical mechanics.
开始讲授统计力学。
路德维格·爱德华·玻尔兹曼是一位奥地利的物理学家,因为在统计力学和统计热力学领域奠基性的贡献而被人们所熟知。
Ludwig Eduard Boltzmann was an Austrian physicist famous for his founding contributions in the fields of statistical mechanics and statistical thermodynamics.
1955年成为普林斯顿大学的教授。虽然在物理学的领域中从事许多的研究,但他还是热衷于统计力学与对称原则。
In 1955, he became Professor in Princeton University. Although he has carried out many studies in the fields of physics, he concentrated on statistic mechanics and symmetry principle.
三年级物理:选修:光学、热力学、统计力学、早期的原子和核理论。
Third year physics - a selection from: optics, thermodynamics, statistical mechanics, beginning atomic and nuclear theory.
统计力学:物理学的分支,将统计学的原理和方法与经典力学和量子力学的定律结合起来。
Statistical mechanics: branch of physics that combines the principles and procedures of statistics with the laws of both classical mechanics and quantum mechanics.
本课程是统计力学的两个系列课程中的一个。本站点内包含课程的习题集和考试题。
This course is part of a two-course sequence in Statistical Mechanics. The web site features problem sets and exams.
用近代统计力学研究成果——积分方程理论和微扰理论简要评述了电解质和非电解质溶液的国内外研究进展。
A brief review by the progress of advanced statistical mechanics, integral equation and perturbation theory for electrolyte and non-electrolyte solutions in recent years is presented.
随着统计力学理论和计算机技术的飞速发展,计算机分子模拟已经成为在分子水平上研究流体的一种强有力工具。
With the rapid development of statistic mechanics theory and computer technology, computer molecular simulation has became a powerful tool to study the fluid in molecular level.
为了建立相对论经典统计力学,分布函数的规格化条件必须明确定义。
The normalization condition of a distribution function should be defined explicitly for establishing relativistic statistical mechanics.
这一结果为非扩展统计力学框架内的系综等效性研究提供新的证据。
This result provides a new proof for the researches of ensembles equivalence in the frame of non-extensive statistical mechanics.
基于四核苷酸参数提出一个统计力学模型用于分析大肠杆菌基因组柔性。
Based on tetranucleotide parameters, a statistical mechanical model was suggested to analyze the flexibility of the Escherichia coli genome.
本文着力探索新的边缘检测与图像恢复方法,并基于元胞自动机(ca)模型和统计力学模型对图像边缘检测与图像恢复方法进行研究。
The study of new methods of edge detection and image restoration is showed in this paper, which based on the model of Cellular Automata (ca) and Statistical Mechanics.
评价了统计力学在开发状态方程中的作用,并指出了其局限性。
The function and limits of statistical thermodynamics in the developing of EOS are valued.
评价了统计力学在开发状态方程中的作用,并指出了其局限性。
The function and limits of statistical thermodynamics in the developing of EOS are valued.
应用推荐