结果表明,通过改变系统变量之间的线性变换矩阵,可以实现混沌系统中各种不稳定周期轨道的稳定控制。
The results show that the UPOs embedded in the chaotic system can be stably controlled by changing the linear transformation matrix of system variables.
其主要思想是通过引入线性变换矩阵来近似经典的局部线性嵌入(LLE),然后通过核方法的技巧在高维空间里求解。
The main idea is to approximate the classical local linear embedding (LLE) by introducing a linear transformation matrix and then find the solution in a very high dimensional space by kernel trick.
应用分式化方法刻画了唯一分解环上对称矩阵模的保持伴随函数的线性变换的形式。
By the fractional method, characterized the linear preservers of the adjoint function on the symmetric matrix module.
给出了两两互素多项式下线性变换的核的直和分解,并应用于幂等矩阵(对合矩阵)的秩的等式证明中。
The direct sum decomposition of the addition of a linear transformation under the coprime polynomial was given, and it was used in the proof of some equality about the rank of idempotent matrix.
利用线性空间上的线性变换,给出了复数域上矩阵的一种形式,并给出了这种分解形式的具体求法。
Using the linear space in linear substitution, has given on the complex field the matrix one form, and gave this kind of decomposition form to ask the law specifically.
本文就线性代数中几个重要知识点:线性变换、线性方程组的解、矩阵对角化等的逆向问题进行研究。
The inverse problems are researched on linear transformation, system of linear equations, diagonalizing of matrix, and so on.
本文就线性代数中几个重要知识点:线性变换、线性方程组的解、矩阵对角化等的逆向问题进行研究。
The inverse problems are researched on linear transformation, system of linear equations, diagonalizing of matrix, and so on.
应用推荐