• 结果表明通过改变系统变量之间线性变换矩阵可以实现混沌系统各种不稳定周期轨道稳定控制

    The results show that the UPOs embedded in the chaotic system can be stably controlled by changing the linear transformation matrix of system variables.

    youdao

  • 主要思想通过引入线性变换矩阵近似经典局部线性嵌入(LLE),然后通过方法的技巧高维空间求解

    The main idea is to approximate the classical local linear embedding (LLE) by introducing a linear transformation matrix and then find the solution in a very high dimensional space by kernel trick.

    youdao

  • 应用分式方法刻画唯一分解环对称矩阵保持伴随函数线性变换的形式。

    By the fractional method, characterized the linear preservers of the adjoint function on the symmetric matrix module.

    youdao

  • 给出两互素多项式线性变换分解应用于幂等矩阵(对合矩阵)的秩的等式证明中。

    The direct sum decomposition of the addition of a linear transformation under the coprime polynomial was given, and it was used in the proof of some equality about the rank of idempotent matrix.

    youdao

  • 利用线性空间线性变换给出复数矩阵一种形式给出这种分解形式的具体求法

    Using the linear space in linear substitution, has given on the complex field the matrix one form, and gave this kind of decomposition form to ask the law specifically.

    youdao

  • 本文就线性代数中几个重要知识点:线性变换线性方程组解、矩阵对角逆向问题进行研究。

    The inverse problems are researched on linear transformation, system of linear equations, diagonalizing of matrix, and so on.

    youdao

  • 本文就线性代数中几个重要知识点:线性变换线性方程组解、矩阵对角逆向问题进行研究。

    The inverse problems are researched on linear transformation, system of linear equations, diagonalizing of matrix, and so on.

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定