如果我看一下笛卡尔坐标,我确实有笛卡尔坐标的形式,当我在这里小声自言自语时,不要介意。
If I look at the Cartesian, I did have the Cartesian form, don't mind while I mutter to myself here quietly.
介绍基于笛卡尔坐标的多刚体系统运动学与动力学分析方法。
Based on the Cartesian coordinate, methods of kinematics and dynamics analysis for multi-rigid-body system are introduced.
利用这个变换矩阵可以方便地将笛卡尔坐标的张量表达式、微分算子及有关公式变换成正交曲线坐标的相应公式。
Using the cosine transform matrix the Cartesian tensors, differential operators and related equations can be readily transformed into corresponding expressions in orthogonal curvilinear coordinates.
本文介绍笛卡尔坐标与正交曲线坐标的“余弦变换矩阵”,证明这个变换矩阵是正交矩阵。
In this paper the cosine transform matrix relating Cartesian coordinates with orthogonal curvilinear coordinates is introduced.
本文介绍笛卡尔坐标与正交曲线坐标的“余弦变换矩阵”,证明这个变换矩阵是正交矩阵。
In this paper the cosine transform matrix relating Cartesian coordinates with orthogonal curvilinear coordinates is introduced. It is shown that this transform matrix is an orthogonal matrix.
本文介绍笛卡尔坐标与正交曲线坐标的“余弦变换矩阵”,证明这个变换矩阵是正交矩阵。
In this paper the cosine transform matrix relating Cartesian coordinates with orthogonal curvilinear coordinates is introduced. It is shown that this transform matrix is an orthogonal matrix.
应用推荐