利用结式矩阵求逆矩阵的多项式快速算法,给出了具有结式矩阵块的分块矩阵逆矩阵的一种快速算法。
A fast algorithm for calculating the inverse and group inverse and MoorePenrose inverse of a resultant matrix is presented by using the fast algorithm for finding polynomials.
它在各种各样的计算机系统上运行,尤其擅长于涉及任意长度整数和小数、图、矩阵和多项式代数的算术。
It runs on a variety of computer systems and is especially good at arithmetic involving arbitrary-length integers and fractions, graphics, and matrix and polynomial algebra.
本文介绍了一种建立在运动链关联矩阵基础上求解运动链特性多项式的新方法。
A new method of obtaining linkage characteristic polynomials based on the adjacency matrix of the kinetic chain is presented in the paper.
应注意在构造ARMA新息模型时,必须进行多项式矩阵的左素分解,才能得到正确的ARMA新息模型。
Notice that constructing the ARMA innovation model, a left co-prime factorization to a polynomial matrix must be performed, so that the ARMA innovation model can correctly be obtained.
本文得到下列结果:通过应用矩阵多项式,得到一个相似变换下变换矩阵的简便解法。
This paper obtained the following results: a simple solution for the similarity matrix under a similarity transformation is obtained by using a matrix polynomial.
利用矩阵的初等变换,给出了两个多项式的最小公倍式、最大公因式及其系数多项式的统一求法。
In this paper we get a seeking unified method of the least common multiple the greatest common factor and coefficients polynomial by implementing elementary row transformation in a polynomial matrix.
分别引入了解决这一问题的状态空间方法和多项式矩阵插值方法。
Both the state space method and the polynomial matrix interpolation method are introduced to solve the problem.
并针对该系统所用的RS(255,247)码推导出了一些基本公式,包括生成多项式,伴随式矩阵,关键方程等。
At the same time, some basic formulas of RS(255,247)code are also concluded, such as generated polynomial, syndromes matrix, key equation and so on.
结果表明,多参考点互相关差分模型能够有效地进行环境激励下的模态识别,并且多项式特征值法比增广矩阵法所得结果更好。
It shows that the presented method can be used to identify modal parameters effectively under ambient excitation and that the polynomial eigenvalue method is superior to the augmented matrix method.
推导出加权矩阵与开环、最优闭环特征多项式系数之间的解析关系式。
The analytical relation among the weighting matrices and open loop and optimal closed-loop characteristic polynomials is derived.
最后,我们给出了一种计算多项式矩阵最小多项式或特征多项式的有效算法,它从低次项到高次项逐项确定最小多项式的系数多项式。
Finally, we present an efficient algorithm for computing the minimal polynomial of a polynomial matrix. It determines the coefficient polynomials term by term from lower to higher degree.
利用矩阵的初等变换,给出了两个多项式的最小公倍式、最大公因式及其系数多项式的统一求法。
Thus we gave a kind of new method for solving the greatest common factor of two-variable polynomials.
考察了除环上的l多项式的左因式、左根与左倍式的性质,给出了导数与左结矩阵的应用。
Left factors, left multiples and left roots of the polynomials over sfield are studed. Applications of derivative and left relative matrices are given.
最后,在分块反对称反循环矩阵性质的基础上,给出了其特征值和特征多项式以及相似对角阵。
Finally, based on these characteristics, the eigenvalues and eigenvalues polynomials and its diagonal matrix were given.
结合多项式方法和QR方法各自的特点,提出了一种计算矩阵重特征值的方法。
There are two kinds of method to calculate the eigenvalues of a matrix: characteristic polynomial method and QR method.
利用正交多项式序列的正交性及微分算子矩阵,论述了时变非线性分布参数系统参数估计的正交多项式法。
New method of parameter estimation for time varying non linear distributed systems is proposed in term of orthogonality of orthogonal polynomial and differential operation matrix.
利用广义拉盖尔多项式的级数表达式和分步积分法,给出了各向同性谐振子径向矩阵元的另一种表达式。
Another expression of the radial matrix elements for isotropic harmonic oscillator is obtained by using progressional expression of the generalized Laguerre polynomial and the partial integration.
从网的关联矩阵以及所定义变迁发生序列的结构,求解结构活网的极小标识,得到了一个多项式时间算法。
A polynomial algorithm about minimal marking of structural live Petri nets is presented, it is based on incidence matrix and the constructive of transitions sequence.
多重线性中心多项式在PI—环论研究中扮演了一个非常重要的角色。引入矩阵序列及m次换位子的概念研究了矩阵环的多重线性中心多项式。
Multilinear central polynomials play a very important role in PI-theory. Introduce the concept of matrix sequence and k-commutator and study the multilinear central polynomials of matrix rings.
给出了多项式参数方程定义的参数曲线的有效隐式化算法,此算法主要是基于矩阵理论。
This paper presents an efficient algorithm for the implicitization of parametric curves defined by polynomial parametric equations, which is mainly based on the theory of matrices.
本文给出了有限域上多项式的友矩阵的某些性质,及其在计算线性移位寄存器序列的周期和循环码的最小长度的应用。
This paper gives some properties of companion matrix of polynomial over finite field with its application for evaluating period of linear shift register sequence and minimal length of cyclic code.
本文在复数域上证明了哈密尔顿-凯莱定理,并给出方阵A的特征多项式的全部矩阵根。
The paper proved the Hamilton-Cayley theorem in complex number space, and indicated the all matrix root of the sign multinomial of matrix A.
基于矩阵多元多项式的带余除法,给出了代数情形多项式组特征列的一种新求法,并举例验证了这种方法的有效性。
Based on the pseudo-division algorithm for multivariate matrix polynomials, a new solving process of characteristic series for algebraic polynomial systems is given.
本文应用对母函数微分的方法得到正态随机矩阵多项式的均值与协差阵的表达式。
An expression for the mean and covariance matrix of normal random matrix polynomial is derived by applying the method of matrix differentiation to generating function.
在矩阵元素的高次多项式中,任一变元的幂次不得高于9次,矩阵元素最大的字符串长度一般在2500左右。
Any of the high order polynomials of the matrix elements should not be higher than 9 degrees, and, in general, the maximum string length of matrix elements is about 2500.
研究了友阵的性质,论述了用相似变换计算矩阵特征多项式的方法。
The property of companion matrix is studied, and the method of calculating the characteristic polynomial of matrix with similar transformation is explained.
研究特征多项式的降阶定理以及它在高阶矩阵方面的应用。
This paper introduces the reduced order theory of characteristic polynomial and its application in the higher order matrix aspects are presented.
从相似矩阵具有相同的特征多项式出发,逐步改变和减弱命题中相关条件,得到了几个关于矩阵特征多项式的结论。
Based on from the fact that similar matrices have the same polynomial, we change and weaken concerned conditions in the propersition then get conclusions about charactersitc polynomials of matrices.
对这几类特殊的矩阵多项式,与之相应的L—值问题可转化为低次的代数多项式求根问题。
For several special classes of matrix-polynomials, we have proved that the L-values can be obtained by computing the roots of some lower order algebraic polynomials.
该算法利用多项式带余除法的相关推论,通过矩阵的列变换来求解关键方程,这样可以快速地得到商式和余式,从而可以减少迭代运算的次数。
The proposed algorithm use the related deduction of division with reminder of polynomials and the key equation is solved by column transformation of matrix.
应用推荐