该电路有较低的温度系数和较高的电源抑制比。
This circuit features low temperature coefficient and high power supply rejection ratio.
电流源采用共源共栅结构,提高了电源抑制比。
The current source adopts cascade structure to improve power supply rejection ration (PSRR).
通过增加一些辅助电路,提高了电路的电源抑制比。
By adding some auxiliary circuits, the power rejection ratio of the circuit is improved.
偏置电路采用自举基准源,具有良好的电源抑制比。
A bootstrap MOS circuit is introduced for bias, which shows a good performance in power supply reject ratio.
提出一种输出低于1V的、无电阻高电源抑制比的CMOS带隙基准源(BGR)。
CMOS bandgap reference (BGR) without a resistor, with a high power supply rejection ratio and output below 1v is proposed.
微功耗、低工作电压、高电源抑制比是在电源芯片中的基准源设计过程中遇到的主要挑战。
Low power, low voltage and high PSRR are the main challenges in designing bandgap reference for switching regulator.
用较简单的电路形式实现了低功耗和高电源抑制比的PTAT电流产生电路和CTAT电流产生电路。
We obtained PTAT and CTAT current generator with low power consumption and high PSRR, which in a simple circuit structure.
提出了一种新颖的利用负反馈环路以及RC滤波器提高电源抑制比的高精密CMOS带隙基准电压源。
In this paper, a novel high precision CMOS bandgap voltage reference which USES a negative back circuit and a rc filter to enhance the PSRR is proposed.
仿真结果表明,该电路不仅具有良好的温度线性度,还具有高电源抑制比,满足本文DAC的设计要求。
The simulation result shows that the circuit not only has good temperature coefficient, but also high PSRR, which meet the requirements of the design of DAC mentioned in this paper.
通过启动电路和提高电源抑制比电路的加入,使得带隙基准电压具有较高的电源电压抑制比和较小的温度系数。
The inclusion of the start up circuit and PSRR enhancement circuit enables it to achieve a low temperature coefficient and high PSRR.
基于带隙基准的基本原理,设计了一种高精度、高电源抑制比(PSRR)、低温度系数(TC)的带隙基准电压源。
Based on the basic principle of bandgap reference, design a high precision, high power supply rejection ratio (PSRR) and low temperature coefficient (TC) bandgap voltage reference.
通过对低压低功耗集成电路设计技术的分析,着重设计了一个基于衬底驱动技术的CMOS带隙基准电压源,其带有提高电源抑制比电路和启动电路。
CMOS bandgap voltage reference with low voltage based on the bulk driven technology is designed in this paper, with circuit to improve PSRR and start-up circuit.
通过对低压低功耗集成电路设计技术的分析,着重设计了一个基于衬底驱动技术的CMOS带隙基准电压源,其带有提高电源抑制比电路和启动电路。
A CMOS bandgap voltage reference with low voltage based on the bulk driven technology is designed in this paper, with circuit to improve PSRR and start-up circuit.
用此工具可方便精确地分析计算基准电压源设计中的温度特性及电源电压抑制比等参数,大大提高设计效率。
The temperature characteristic, Voltage control rate and other parameters can accurately be analyzed, and design efficiency can greatly be raised by using the tool.
它的温度稳定性和电源电压抑制比是影响整个系统精度和性能的关键性因素。
Thermal stability and Power Supply Rejection Ratio (PSRR) of the voltage reference circuit are the two major factors that influence the precision and stability of the whole system.
带隙基准可提供近似零温度系数和大的电源电压抑制比的稳定电压基准,且与工艺基本无关。
Bandgap Reference can provide stable voltage with nearly zero temperature coefficient and larger PSRR, and also are process unrelated.
其中带隙基准采用指数曲率补偿作为非线性补偿,具有很好的温度性能和高电源电压抑制比;
The bandgap reference uses the exponential curvature compensation as the nonlinear compensation and has the better temperature characteristic and high PSRR(Power Supply Rejection Ratio);
举个例子,为了衡量负电源纹波抑制比,放大器的-VS通过端口1与负直流电压通过8753的偏压口与正弦波叠加。
To measure negative PSRR, for example, the amplifier's -vs pin comes through port 1, with the negative dc voltage through the bias port, of the 8753 with a superimposed sinusoid.
举个例子,为了衡量负电源纹波抑制比,放大器的-VS通过端口1与负直流电压通过8753的偏压口与正弦波叠加。
To measure negative PSRR, for example, the amplifier's -vs pin comes through port 1, with the negative dc voltage through the bias port, of the 8753 with a superimposed sinusoid.
应用推荐