近几年来,用线性矩阵不等式(LMI)检验矩阵多胞形稳定性已成为一个十分有用的工具。
In recent years, the use of LMI to check stability for polytope matrices has become a useful tool.
首先,用线性矩阵不等式(LMI)给出了线性广义系统圆盘区域的控制器存在的充分条件。
Firstly, based on linear matrix inequalities (LMIs), a sufficient and necessary condition of circular regional controller possessing integrity for descriptor linear systems is given.
本文主要研究了一类同时具有时变参数不确定性和外部干扰输入的离散线性系统有限时间状态稳定性问题,用线性矩阵不等式给出问题可解的充分条件。
In this paper finite-time control problem for one kind of linear discrete-time linear system subject to time-varying parametric uncertainties and exogenous disturbances is studied.
最后通过线性参变控制,获得了用有限维数线性矩阵不等式描述的充分条件。
A sufficient condition is obtained using finite dimension linear matrix inequalities (LMI) describing by linear (parameter-variety) control.
用此观测器不需要估计未知参数及求解线性矩阵不等式。
With the proposed observer, estimating the unknown parameters and solving linear matrix inequalities are not needed.
用矩阵不等式给出了模糊反馈增益和模糊观测器增益的存在的充分条件,并将这些条件转化为线性矩阵不等式(LMI)的可解性。
Sufficient conditions for the existence of fuzzy state feedback gain and fuzzy observer gain are derived through the numerical solution of a set of coupled linear matrix inequalities(LMI).
用矩阵不等式给出了模糊反馈增益和模糊观测器增益的存在的充分条件,并将这些条件转化为线性矩阵不等式(LMI)的可解性。
Sufficient conditions for the existence of fuzzy state feedback gain and fuzzy observer gain are derived through the numerical solution of a set of coupled linear matrix inequalities(LMI).
应用推荐