• 近几年来,线性矩阵不等式(LMI)检验矩阵多胞形稳定性成为一个十分有工具

    In recent years, the use of LMI to check stability for polytope matrices has become a useful tool.

    youdao

  • 首先线性矩阵不等式(LMI)给出了线性广义系统圆盘区域控制器存在的充分条件

    Firstly, based on linear matrix inequalities (LMIs), a sufficient and necessary condition of circular regional controller possessing integrity for descriptor linear systems is given.

    youdao

  • 本文主要研究了一类同时具有时变参数不确定性外部干扰输入的离散线性系统有限时间状态稳定性问题用线性矩阵不等式给出问题可解充分条件。

    In this paper finite-time control problem for one kind of linear discrete-time linear system subject to time-varying parametric uncertainties and exogenous disturbances is studied.

    youdao

  • 最后通过线性参变控制获得了有限维数线性矩阵不等式描述充分条件

    A sufficient condition is obtained using finite dimension linear matrix inequalities (LMI) describing by linear (parameter-variety) control.

    youdao

  • 观测器需要估计未知参数求解线性矩阵不等式

    With the proposed observer, estimating the unknown parameters and solving linear matrix inequalities are not needed.

    youdao

  • 矩阵不等式给出了模糊反馈增益模糊观测器增益存在充分条件,并将这些条件转化线性矩阵不等式(LMI)的可性。

    Sufficient conditions for the existence of fuzzy state feedback gain and fuzzy observer gain are derived through the numerical solution of a set of coupled linear matrix inequalities(LMI).

    youdao

  • 矩阵不等式给出了模糊反馈增益模糊观测器增益存在充分条件,并将这些条件转化线性矩阵不等式(LMI)的可性。

    Sufficient conditions for the existence of fuzzy state feedback gain and fuzzy observer gain are derived through the numerical solution of a set of coupled linear matrix inequalities(LMI).

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定