我的下一站是参观AC - DC热电压和电流实验室。
My next stop took me to the AC-DC thermal voltage and current lab.
研究了通气状态和加热电压对传感器响应和气敏性的影响。
The impacts of aerating state and heating voltage on the response and the sensitivity were studied.
参数控制实验分析表明,应在有效的范围内减小加热时间和加热长度,提高加热电压。
The results indicate that it's better to increase the heat voltage and reduce the heat time and length in a proper range.
NIST测量客户的热电压转换器,用来和那些由串联热电偶和一个电阻相乘的AC - DC对比区别。
NIST measures the AC-DC difference of customer's thermal voltage converters by comparing them with standards composed of a thermoelement in series with a multiplying resistor.
灼热丝燃烧试验仪实验过程中,当达到设定的灼热时间时,加热电压自动断开,实验小车自动离开,脱离灼热丝。
The experimental process, when to set the burning time, heating voltage automatically disconnect, experimental automatic leave, car out of the hot wire.
接触电势或热电效应偏移电压是设计用于低压切换的开关卡的关键技术指标。
The contact potential or thermoelectric offset voltage is the key specification of a switch card designed for low voltage switching.
注意,用这种方法计算电阻时,完全抵消了热电动势电压(VEMF)。
Note that the thermoelectric voltage (VEMF) is completely canceled out by this method of resistance calculation.
当切换低压信号并进行低电阻测量时,可通过偏移补偿的方法消除热电效应偏移电压。
When switching low voltages while making low resistance measurements, the thermoelectric offset voltages may be canceled by using offset compensation.
用铜导体将两个电池和电压表相连,以便使热电动势(VEMF)引起的误差减到最小。
Copper conductors connect the cells to the voltmeter to minimize errors due to thermoelectric EMFs (VEMF).
开关卡的连接本身也是另一个热电电压源。
The connections to the switch card itself represent another source of thermally generated voltages.
这些误差源包括热电动势、由射频干扰(RFI)经过整流而产生的偏置量以及电压表输入电路中的偏置量。
These sources include thermoelectric EMFs, offsets generated by rectification of RFI (radio frequency interference), and offsets in the voltmeter input circuit.
热电堆的工作电压和电流与制冷效率也有着密切的关系。
The refrigeration efficiency also has close relation to the voltage and current of the thermopile.
热电偶是基于物体的热电效应,把温度信号转换成电压信号。
Thermocouple convert temperature signal to voltage signal in the light of pyroelectric effect of object.
提出一种采用改变参考电压来校正热电偶非线性的简单方法。
The simple method by changing reference voltage for non-linear correction of thermocouples is introduced.
由于开关卡和互连电缆引起的热电效应偏移电压可采用一个短路通道来建立一个零参考,从而进行补偿。
The thermoelectric offset voltage due to the switch card and the interconnecting cable may be compensated for by using a short-circuited channel to establish a zero reference.
依据热电阻与温度的数学关系,通过控制热电阻的电压电流恒定实现温度恒定的控制。
According to the mathematics relation between thermal resistance and temperature, controlling the voltage and electric current of thermal resistance invariable to realize the constancy of temperature.
热电电压是低电压测量中最常见的误差来源。
Thermoelectric voltages are the most common source of errors in low voltage measurements.
在测量差动热电偶的输出时,也可以采用同样的方法来消除偏置电压。
This same technique is used to cancel offsets when measuring the output of differential thermocouples.
介绍了一种新颖的基于电流滞环和空间电压矢量调制(SVPWM)技术的电压、电流双闭环感应加热电源。
A novel induction heating power based on current hysteresis band control and SVPWM modulation technology is introduced in this paper.
热电偶时创建两个不同材料接触和联络点,产生一个小开路电压随温度的变化。
A thermocouple is created when two dissimilar materials touch and the contact point produces a small open-circuit voltage as a function of temperature.
同时,对热电偶电压信号从软件数字滤波上消除干扰。
Additionally, digital filter from LabVIEW is used to denoise voltage from K-type thermocouple.
利用铁-康铜热电偶丝、电压放大器、A/D板通过半人工热电偶测温方法在线采集磨削温度;
The grinding temperature is obtained online using thermoelectric couple, voltage amplifier, A/D card and data collection software.
所述热电发生器用于产生响应作用于热电发生器两端的温度梯度而产生的足够高电压的电激活能量。
The thermoelectric generator is adapted to generate an electrical activation energy with sufficiently high voltage in response to a temperature gradient acting across the thermoelectric generator.
反过来,当对热电器件两端施加电压则会产生温度差。
Conversely, when a voltage is applied to it, it creates a temperature difference.
移动的载流子迁移到冷端后会形成载流子浓度差,从而在材料两端产生热电电压。
Mobile charged carriers migrating to the cold side to create a carrier concentration gradient thus giving rise to a thermoelectric voltage.
如果发生这种情况,就不可能区分出信号电压的变化和热电动势的变化。
If this occurs, distinguishing between a change in signal voltage and a change in thermoelectric EMFs becomes impossible.
当热电器件两端存在温差则会产生电压。
A thermoelectric device creates a voltage when there is a different temperature on each side.
热电效应能将温差直接转换成电压,反之亦然。
The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice-versa.
热电效应能将温差直接转换成电压,反之亦然。
The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice-versa.
应用推荐