求通量的线积分就变成这样了。
如果给定一条封闭曲线,那么求所做功的线积分为零。
If we have a closed curve then the line integral for work is just zero.
求S上zdxdy的二重积分。
今天这个是用来求F的法向分量的积分的。
在转换文档时,XSLT是一种极其高效的语言,但对于更为传统的任务,比如说在求微分方程的积分或与数据库通信时。
XSLT is a wonderfully efficient language for transforming documents, but it's not always the best language for more traditional tasks like integrating differential equations or talking to databases.
当我们在做一重积分时,并不是为了去求平面某区域的面积。
When you do single integrals it is usually not to find the area of some region of a plane.
那么对做功求线积分,就变成坐标积分,同时也有对通量求线积分的。
So, the line integral for work Mdx+Ndy becomes in coordinates integral of Mdx plus Ndy while we've also seen line integral for flux.
一种考虑这个问题的办法是,如果你还觉得,二重积分是求体积的话,那这个度量的,就是函数1的图形下的体积。
One way to think about it, if you're really still attached to the idea of double integral as a volume what this measures is the volume below the graph of a function one.
在模型估计上,采用等级似然估计方法,从而避免了求后验分布的积分运算,简化了估计过程。
Using hierarchical likelihood approach, the multidimensional integral is avoided, and the hierarchical likelihood function and the process of estimating model ar.
由于不必进行直接的大型矩阵求逆运算,因而与体积分方程的直接解法相比,所需的机时更少,并减少了对内存的要求。
The method requires less computation time and smaller memory than the direct computation of volume integral equations, since the large scale matrix inversion may be avoided.
由原函数与反函数的关系、分部积分公式以及变量代换得出利用反函数法求不定积分的一系列积分公式。
This paper give a series Integration formula of indefinite integral by inverse function method, which use the relationship of a function and its inverse function and the Integration by parts.
第二换元积分法是求函数不定积分的一种重要方法,具有一定的适用范围,对某些无理函数的积分的求解通常使用该方法。
The integration by second substitution is an important method of calculating indefinite integral, it has a certain application, it usually applies to calculate some integrals of irrational function.
采用无条件稳定的精细逐步积分法求解结构的模态动力学微分方程,构造了通过结构的模态响应反求荷载列阵的迭代算法。
The highly precise direct integration scheme is used for solving modal dynamic differential equation of the structure nd a dynamic load identification method by the modal responses is proposed.
通过积分集中载荷的应力强度因子求分布载荷的应力强度因子的方法是可行的。
This method proved available to find the stress intensity factors of the distributed load by integrating the intensity factors of concentration load.
在通信方面有很多优秀的教材,且大多数都求读者具备除基础微积分外的数学知识。
There are many excellent texts on communications, most of which assume a familiarity with mathematics beyond introductory calculus.
利用此套技术可对实时传输的加速度记录同步进行长周期基线校正、积分求速度及积分求位移。
By using this technique, the baseline of transmitting acceleration data in real time is adjusted, and the velocity and the displacement are integrated synchronistically.
方法利用微积分学中求极小值的方法。
Methods Method of deducing minimum value in differential and integral calculus was applied.
假设带电体表面均匀带电,运用积分求电势、电场分布的方法,实际意义不大。
On assumption that the surface of the conductive body is uniformly charged, the method for evaluation of the electric field and potential distribution is insignificant in practice.
是关于复化梯形积分的程序,在这里我们可以实现对你需要的梯形求面积。
Minute of trapezoidal integration of the procedure, here we can achieve right you...
幂指函数求极限问题是微积分学中的一个常见问题,同时又是一个难点问题。
The limit problem of power exponent function is common but difficult in differential and integral calculus.
为了避免求域内项的积分,将上述两个方程进行联立求解,快速、准确地得到薄板结构的频率方程表达式。
According to the constraint conditions on boundaries, dynamic characteristic equations of the thin assembled plate structure on the boundary and in the domain are deduced.
应用全微积分方程的充要条件给出了求一阶微分方程积分困于较为一般的方法。
It is shown that the common method of integrating factor of differential equation of first order is given.
本文给出求不定积分的一种新方法。
A new method is given which can solve the indefinite integral.
求极限问题是微积分学中的一个常见问题,同时又是一个难点问题。
The limit problem of power exponent function is common but difficult in differential and integral calculus.
极限是微积分中的一条基本线索。本文主要列举五种常用的求极限方法:1、利用单调有界原理求极限;
The limits is a basic clues of the calculus. The main example of this paper gives five in common method: (1) bounded monotonic principle;
利用部分分式求有理函数的积分时,确定部分分式的系数的计算量很大,举例介绍如何确定部分分式的待定系数。
Abstract:The solutions to determine the undetermined coefficients of partial fraction in the rational function integral is introduced.
利用部分分式求有理函数的积分时,确定部分分式的系数的计算量很大,举例介绍如何确定部分分式的待定系数。
Abstract:The solutions to determine the undetermined coefficients of partial fraction in the rational function integral is introduced.
应用推荐