非线性方程的比较定理。
证明了与随机控制问题有关的动态规划方程粘性解的比较定理。
This paper gives a proof of a comparison theorem on the viscosity solution of HJB Equation.
利用多重尺度法和比较定理,研究了初始边值问题解的渐近性态。
By using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the initial boundary value problem is studied.
进而,利用李雅普·诺夫函数和比较定理确定了持续生存的条件。
Conditions for permanence is established via the method of comparison involving multiple Liapunov functions.
主要运用比较定理得到了种群一致持续生存、弱持续生存以及绝灭的判据。
Sufficient criteria on uniform persistence, weak persistence and extinction of the consumer population are obtained by using mainly the comparison theorem.
通过运用比较定理和构造上、下解方法,建立了该方程组解的整体存在和有限爆破的充分条件。
By comparison the theorem and the upper-lower solution method, the sufficient condition for the finite time bow-up and global existence of solution are established.
给出系统振动的比较定理,利用比较定理讨论了一类非线性偏差分方程的振动性,给出简单的判别条件及证明。
By means of the comparison theorem, and the oscillation of some non-linear partial difference equations is discussed and some concise conditions and authenticity are given.
利用比较定理、矩阵范数和矩阵测度的有关性质,提出了简单不确定时滞系统及对称组合不确定时滞系统的稳定条件。
Using comparison theorem and some properties of the matrix norm and the matrix measure, the paper provides several stability conditions for single and symmetric composite uncertain delay systems.
利用比较定理、矩阵范数和矩阵测度的有关性质,提出了简单不确定时滞系统及对称组合不确定时滞系统的稳定条件。
Using comparison theorem and some properties of the matrix norm and the matrix measure, the paper provides several stability conditions for single and symmetric composite uncertain delay systems.
应用推荐