多项式模归约算法是计算机代数中的基本问题之一,在编码算法和密码体制设计中有着广泛应用。
Polynomial modulo reduction algorithms are one of the fundamental issues of computer algebra, and widely used in coding algorithms and cryptographic system design.
根据模平方运算自身的特点,选用了多项式基进行运算,使模平方运算在一个时钟周期完成,比直接调用模乘运算提高一半以上的速度。
Using multinomial radix, the modular square will be finished in one period of the clock, which is faster than using the point multiplication directly.
本文用适当的多项式函数近似扩散光波导的高斯折射率分布函数,推导了导模有效折射率的解析形式渐近解。
The Gaussian index profile of a diffused optical waveguide is approximated by an appropriate polynomial, and the asymptotic solutions of the mode efficient index is derived in a analytical form.
传统多项式根最大模求解算法的求解效率低、计算复杂。
Classic algorithm is slow and complex for solving the maximum module of the roots of polynomials.
针对该问题,提出一种基于多项式根的最大模求解的二分搜索算法。
Aiming at these problems, this paper presents a binary search algorithm based on solving the maximum module of roots of polynomial.
利用光滑模和K -泛函给出了一类多元三角多项式算子同时逼近的正逆定理。
Using the modulus of smoothness and K-functional, direct and inverse theorems of simultaneous approximation for a kind of multivariate trigonometric polynomial operators are established.
利用光滑模和K -泛函给出了一类多元三角多项式算子同时逼近的正逆定理。
Using the modulus of smoothness and K-functional, direct and inverse theorems of simultaneous approximation for a kind of multivariate trigonometric polynomial operators are established.
应用推荐