首先根据有限交换群上对称双特征标的概念,给出着色李超代数的定义,并介绍关于着色李超代数的一些基本概念与基础知识。
First, we give the definition of Lie color superalgebras using the symmetric bicharacter on a finite commutative group, and also we introduce some fundamental notions about Lie color superalgebras.
在第一部分3.1中,给出了若干由交换子群的中心化子或正规化子满足的条件所确定的有限群的结构描述。
In the first section, namely 3.1, we obtained some description of the structure of some finite groups whose centralizers or normalizers of Abelian subgroups satisfy some conditions.
研究了每一非交换子群皆为次正规的有限非幂零群的结构。
In this paper, the finite non-nilpotent group with every non-abelian subgroup being subnormal is investigated.
本文第四部分3.4,主要讨论了交换子群对有限群可解性的影响,得到了有限群可解的若干充分条件。
In the last section, namely 3.4, we mainly discuss how Abelian subgroups influent the solvability of finite groups, so we obtain some sufficient conditions of solvable groups.
文中研究定义在紧有限交换半群上的概率测度,同时研究它们的合成收敛序列的性质。
In this paper, the probability measure defined on the compact finite commutative semigroup and us composition convergence is discussed.
还给出了为有限个主理想的并的交换序半群类中的诺特性,阿基米德性,正则性以及有限生成性之间的一些关系。
In this paper using the concept of the main middle ideal gives a condition of the soft algebra as a direct product of chains.
还给出了为有限个主理想的并的交换序半群类中的诺特性,阿基米德性,正则性以及有限生成性之间的一些关系。
In this paper using the concept of the main middle ideal gives a condition of the soft algebra as a direct product of chains.
应用推荐