将有理函数分解为部分分式的难点就是确定部分分式中的待定系数。
The difficulty in decomposing rational function into partial fraction is to fix the undetermined coefficient in partial fraction.
本文利用导数给出了有理真分式分解为部分分式时的一个简洁的系数公式以及该公式的使用。
This paper, by using derivative, gives a concise coefficient formula and its usage in decomposing rational into partial fraction.
留数是复变函数中的一个极其重要的概念,其应用也非常广泛,本文证明了实系数有理分式函数的共轭复极点的留数也互成共轭。
This paper proves that residues at conjugate complex poles of rational fractional function with real coefficients are conjugate complex Numbers as well.
本文利用整系数多项式与正有理数的对应,将多项式因式分解通过对真分数序列筛选的办法求得因式。
Through the corresponding between integral coefficient polynomial and rational number, this paper obtains factorization from factorization of polynomial by the way of sieve in true fraction series.
笔者在此指出了罗朗级数的系数与有理函数分解的部分分式之和的系数之间的关系,并举出应用实例。
This paper points out the relationship between the coefficient of Laurent series and that of the sum of partial fractions for rational functions. Some typical examples are presented in illustration.
根据有理函数及其导数性质,用微分法把有理函数分解为部分分式的和,给出了一次因式所对应的部分分式各系数和二次质因式前两对系数的计算公式。
Raised the differential method of resolving rational function into fractions, and formulas were suggested of the coefficients which correspond to liner factor and quadratic prime factor.
通过研究多项式的系数来确定整系数多项式的有理根,进而得出整系数多项式的有理根的一个判定定理和根的存在定理。
The paper available mapping of integral coefficient polynomial and rational number, obtain factorization from factorization of polynomial by the way of sieve in true fraction series.
利用部分分式求有理函数的积分时,确定部分分式的系数的计算量很大,举例介绍如何确定部分分式的待定系数。
Abstract:The solutions to determine the undetermined coefficients of partial fraction in the rational function integral is introduced.
利用部分分式求有理函数的积分时,确定部分分式的系数的计算量很大,举例介绍如何确定部分分式的待定系数。
Abstract:The solutions to determine the undetermined coefficients of partial fraction in the rational function integral is introduced.
应用推荐