然后,可以用微分关系,或受约束的偏微分来表示,曲线的切向量,就是这样了。
Then actually there are ways you can use basically differentials and constrained partials to figure out what the tangent vector to the curve is and so on.
我所做的就是把F投影到切向量方向上,得出F沿着曲线的值,然后再把这些加起来。
What I do at any point is project F to the tangent direction, I figure out how much F is going along my curve and then I sum these things together.
最后给出一些实例来说明松弛参数和切向量对细分曲线的影响。
Finally, we illustrate the effects of using the tension parameter and tangent vectors to generate subdivision curves.
最后给出一些实例来说明松弛参数和切向量对细分曲线的影响。
Finally, we illustrate the effects of using the tension parameter and tangent vectors to generate subdivision curves.
应用推荐