本文用有限的二重傅里叶变换解波动方程,热传导方程,拉普拉斯方程以及泊松方程的非齐次边值问题。
In this paper, the finite double Fourier transforms were applied to solve the nonhomogeneous boundary value problems of the wave, heat conduction, Laplace and Poisson equations.
使用边界积分方法求解已知第二类边界条件的拉普拉斯方程或泊松方程时,理论上解是不唯一的。
Theoretically the numerical solution of Poisson's equation or Laplace's equation plus Neumann boundary condition calculated by the boundary integration method is not unique.
泊松定理、隶莫佛-拉普拉斯定理给出了二项分布的近似计算公式。
Poisson theorem and De Moivre-Laplace theorem present the approximate calculation formula of binomial distribution.
在此中级课程中,我们将会基于课程1中所教授内容,介绍更复杂的风格,例如松戈、康普拉萨、莫桑比克、阿巴库阿等等,同时亦会涉。
In this intermediate course we will build upon the essentials taught in seminar 1, with an introduction to more complex styles such as Songo, Comparsa, Mozambique, Abakua.
本文推导出了该单元的拉普拉斯方程、泊松方程和波动方程的单元特征式。
The ring unit characteristic equations in relation to Laplace 's, Poissou 's and Helmholtz 's equa. tions are derived.
在矩形网格上的九点差分近似的正确公式。使用它,在均质情况下,对拉普拉斯方程、布阿松方程和热传导方程可以构造出高阶精度的差分近似。
Under homogeneous conditions, the application of this equation may give a differential approximation of high order accuracy for Lapace equation, Poisson equation and heat conduction equation.
电场的数学基础包括:库仑定律的积分形式、高斯定理的积分形式,拉普拉斯公式和泊松公式,散度定理。
Topics for the electric field mathematics include: The integral form of Coulomb's Law, Gauss's Law, the equations of Laplace and Poisson, and the divergence theorem.
电场的数学基础包括:库仑定律的积分形式、高斯定理的积分形式,拉普拉斯公式和泊松公式,散度定理。
Topics for the electric field mathematics include: The integral form of Coulomb's Law, Gauss's Law, the equations of Laplace and Poisson, and the divergence theorem.
应用推荐