讨论了线性代数中矩阵的秩、向量组的秩与线性方程组的秩之间的关系。
This paper describes the relationship between the rank of matrix, the rank of vector group and liner equation group in the linear algebra.
探讨在利用对应直线进行摄像机外部参数校正的过程中,如何快速简便地确定齐次方程组系数矩阵秩的问题。
In camera calibration with line correspondences, it is important to determine the rank of the coefficient matrix of the equation system in a quick and efficient way.
利用齐次线性方程组解的理论讨论矩阵的秩,给出几个关于矩阵秩的著名不等式的证明,并证明了两个命题。
The article discusses rank of a matrix by the solution theorem of system of homogeneous linear equations, and proves several famous inequalities and two propositions on rank of a matrix.
将行列式的值、矩阵的秩、齐次线性方程组的解等知识运用于向量组线性相关性判定,归纳出六种判定向量组线性相关性的方法。
The judging methods of the vectors group related dependence from determinant values, rank of matrix, solution of system of linear equations etc were studied.
利用齐次线性方程组解的理论讨论矩阵的秩,给出几个关于矩阵秩的著名不等式的证明,并证明了两个命题。
The judgment theorems for locating correctness were concluded by skillfully combining the solutions of homogenous linear equations with locating schemes.
利用齐次线性方程组解的理论讨论矩阵的秩,给出几个关于矩阵秩的著名不等式的证明,并证明了两个命题。
The judgment theorems for locating correctness were concluded by skillfully combining the solutions of homogenous linear equations with locating schemes.
应用推荐