本文就数列、级数、积分等内容,讨论了它们之间的联系及转化。
This article discusses the contents and the relations and conversion of series, sequences and integrals.
自然级数遵照一在西方普及的如“斐波纳契级数”那样的数列。
The natural progression follows a series that is popularized in the West as the "Fibonacci series".
并采用一个矿山实测得到的震级数列进行了进化神经网络方法的实用性验证,结果表明,进化神经网络不但模型拟合精度高,而且预测性能也较好。
The proposed model is tested by a real magnitude series from a mine, and results show that evolutionary neural network model has not only high precision, but also high prediction.
文章通过对无穷小量与无穷大量的阶的概念研究,用阶的估计讨论数学分析中数列、函数及级数收敛问题,也为收敛问题深入研究提供了一种方法。
This paper studies the concept of infinitesimal and infinity, and discusses the convergence of sequence, function and series with the estimation of the orders.
第二部分是在一致收敛条件下函数列、函数项级数以及含参量反常积分的性质。
The second part is in uniform convergence conditions function series, function and parameter improper integral. We properties.
我发现的第一件事情是610是创造性几何学斐波 纳 契级数数列的部分。
The first thing I discovered was that 610 is part of the Fibonacci series of creational geometry.
利用解析数论工具证明了算术级数数列中素数幂分布的若干结果,这些结果在提供RBIBD设计与PMD设计的渐近存在性定理的精确定界时具有重要作用。
We present several theorems on the distribution of prime powers. These results play a very important role in providing explicit bounds for the asymptotic existence theorems of RBIBD and PMD.
利用解析数论工具证明了算术级数数列中素数幂分布的若干结果,这些结果在提供RBIBD设计与PMD设计的渐近存在性定理的精确定界时具有重要作用。
We present several theorems on the distribution of prime powers. These results play a very important role in providing explicit bounds for the asymptotic existence theorems of RBIBD and PMD.
应用推荐