基于多项式分段拟合的舰船观测方位数据处理方法,对观测方位序列进行分段处理。
The data processing method of warship observation orientation based on polynomial segment fitting, and the sequences of observation orientation were processed in segment.
利用匹配多项式根的信息,根据其定义以及图的度序列和匹配多项式的性质推导。
Use the information of the matching roots, and the character of the degree sequence and matching polynomials to compute.
针对沉降数据序列的特征,研究了多项式回归方法、小波降噪方法、频谱分析法在沉降数据处理中的应用。
Probing to characters of subsidence series, we study on application of polynomial regression, wavelet denoising and frequency analysis on subsidence series processing.
对相依时间序列数据,在一定的条件下已有人证明了局部多项式加权回归系数估计服从渐近正态分布,其中核函数是有界的。
Fan J and Gijbels I gave the asymptotic normality of local polynomial regression estimation in dependent time series, where the weighted function is bounded.
给出了两个GMW序列具有相同生成多项式的充要条件。并讨论了进一步的结论。
This paper gives the necessary and sufficient conditions when the two GMW sequences have the same generator polynomials, and discussed the further conclusions.
本文解决了整环上两条序列的最短线性递归问题,并给出了递归极小多项式的方法。
This paper presents a solution to the problem of the shortest linear recurrence of two sequences over an integral domain and describes the recurrence of the minimal polynomial.
运用该方法可以快速而准确地计算出纠错码生成多项式的系数序列以及差错伴随式。
Using this method, the rapid and efficient computation for the coefficients of the generating polynomial and syndrome polynomials can be conducted.
任何多项式系数的绝对值都构成单峰序列。
The absolute values of the coefficients of any chromatic polynomial form a unimodal sequence.
快速相关攻击的关键是寻找序列的项数较少、次数较低的生成多项式。
It is a key for the fast correlation attacks that search for generation polynomials with less terms and low degrees.
本文给出了有限域上多项式的友矩阵的某些性质,及其在计算线性移位寄存器序列的周期和循环码的最小长度的应用。
This paper gives some properties of companion matrix of polynomial over finite field with its application for evaluating period of linear shift register sequence and minimal length of cyclic code.
通过构造多项式序列的方法,建立了非线性时滞方程的解的零点分布,给出了较为广泛的振动条件。
The distribution of zeros for nonlinear differential equations with positive arguments by method of polynomial series, and some more explicit conditions to oscillate are given.
第二章刻画了一类满足三项递归关系的实零点多项式序列的零点位置和零点重数的关系。
In the second chapter, we characterize the relations between locations and multiplicities of zeros of a sequence of real-rooted polynomials defined by a three-term recurrence relation.
本文利用整系数多项式与正有理数的对应,将多项式因式分解通过对真分数序列筛选的办法求得因式。
Through the corresponding between integral coefficient polynomial and rational number, this paper obtains factorization from factorization of polynomial by the way of sieve in true fraction series.
相比先前基于0 - 1编码的多项式核,采用新的字符串核能较好地度量序列之间的相似度。
Compared to the 0-1 polynomial kernel, our newly designed string kernel based on edit distance can effectively measure the similarity between sequences.
利用正交多项式序列的正交性及微分算子矩阵,论述了时变非线性分布参数系统参数估计的正交多项式法。
New method of parameter estimation for time varying non linear distributed systems is proposed in term of orthogonality of orthogonal polynomial and differential operation matrix.
从网的关联矩阵以及所定义变迁发生序列的结构,求解结构活网的极小标识,得到了一个多项式时间算法。
A polynomial algorithm about minimal marking of structural live Petri nets is presented, it is based on incidence matrix and the constructive of transitions sequence.
多重线性中心多项式在PI—环论研究中扮演了一个非常重要的角色。引入矩阵序列及m次换位子的概念研究了矩阵环的多重线性中心多项式。
Multilinear central polynomials play a very important role in PI-theory. Introduce the concept of matrix sequence and k-commutator and study the multilinear central polynomials of matrix rings.
本文给出了关于截短m序列的极小多项式的几个结果。并提出了关于极小多项式的一个猜想。
In this paper, theorems are given on the minimum polynominal of Modified DE Bruijn sequences. We make a guess on the minimum polynominal of Modified DE Bruijn sequences.
给出了构造多项式序列的一种方法,并采用分析的方法证明该序列的一致收敛性。
A method for making polynomial train is given, and the uniform convergence of the train is proved by means of analysis method.
但二次多项式只能拟合x坐标与Y坐标之间成函数关系的点序列,无法拟合闭合曲线。
But the quadratic curve can be used only in condition when each X-coordinate of the points sequence mapping to only one Y-coordinate, so it can't be used in fitting closing curve.
伪随机序列在现代通信技术中有着非常重要的作用,其技术关键是实现本原多项式。
Pseudo random sequence plays a very important role in modern communication technology. The paper to establish pseudo random sequence to realize primitive polynomial.
文中分析了短序列非多项式相位对HAF 及PHAF的影响,并通过仿真实验给出了具有一般性的结论。
The disadvantage of HAF/PHAF-based polynomial-phase estimation method with short and non-polynomial phase sequences is analyzed in this paper and some general conclusions are drawn after simulations.
文中分析了短序列非多项式相位对HAF 及PHAF的影响,并通过仿真实验给出了具有一般性的结论。
The disadvantage of HAF/PHAF-based polynomial-phase estimation method with short and non-polynomial phase sequences is analyzed in this paper and some general conclusions are drawn after simulations.
应用推荐