非线性系统的长期规则运动除了平衡点和周期解以外,概周期解,或有时表现为拟周期解也是一种长期规则运动。
Besides the equilibrium and periodic solution, the almost periodic solution, which sometimes appears as quasi-periodic solution, is also a long term regular motion of nonlinear system.
以流体流速作为变化参数,运用稳定性理论分析了平衡点附近定常解的稳定性问题;
Taking the fluid velocity as changing parameter, the stability of steady-state solution near the equilibrium points is analyzed by using Theory of Stability.
在一定的条件下我们证明了非线性互补问题的解是该微分方程系统的平衡点,并且证明了该微分方程系统的稳定性和全局收敛性。
We prove that the solution of a nonlinear complementarity problem is exactly the equilibrium point of differential equation system, and prove the asymptotical stability and global convergence.
系统随着参数的变化,从平衡点分岔出周期解。
The periodic solution can be bifurcated from equilibrium point with the variation of parameters.
给出了非线性解耦系统平衡点的计算公式。
The calculation of equilibrium points for a nonlinear decoupled system is discussed.
用解析几何作为一种近似的方法讨论了生命能量系统动力学模型中两个典型方程解函数平衡点的求解问题。
Analytic geometry was used as an approximate method to discuss the equilibrium values of two typical dynamic equations of Life Energy System.
构造了一对合适的上下解,利用单调迭代方法证明了模型的两个平衡点之间行波解的存在性,进一步丰富了单调方法的内容。
This paper uses the monotone iterative technique to investigate the existence of the solutions of a class of boundary value problem for third-order differential equation.
构造了一对合适的上下解,利用单调迭代方法证明了模型的两个平衡点之间行波解的存在性,进一步丰富了单调方法的内容。
This paper uses the monotone iterative technique to investigate the existence of the solutions of a class of boundary value problem for third-order differential equation.
应用推荐