本文给出常系数线性微分方程组一种新的求解方法。
This paper suggests a new way of finding solutions for linear systems of ordinary differential equations with constant coefficients.
讨论一阶常系数线性微分方程组通解问题,给出一种新的向量解法。
We discuss the first order linear differential equations with constant coefficients and give a new vector method of it.
本文主要探讨可化为常系数的线性微分方程的求解问题。
This paper mainly deals with the solution to the linear differential equation that can be changed into the one with constant coefficients.
一种重要的情形是常系数二阶线性齐次微分方程。
An important case is the linear homogeneous second-order differential equation with constant coefficients.
给出了常系数非齐次线性微分方程特解的一种新的公式化求解方法。
This paper given the formula of solution for nonhomogeneous linear differential equation with constant coefficients.
对二阶变系数非线性微分方程的常系数化给出两个使其可积的条件,并举例论证。
The two conditions of the second order nonlinear differential equation with variable coefficient are given and expounded with examples.
二阶常系数非齐次线性微分方程的特解一般都是用“待定系数”法求得的,但求解过程都比较繁琐。
In general, special solution of non-homogeneous linear equation of constant coefficient of the second order is obtained by the method of undetermined coefficient, but it's process is too complicated.
本文给出了一个二阶常系数线性非齐次微分方程的特解公式。
This paper deals with the formula of particular solution to 2-order linear inhomogeneous differential equation with constant coefficients.
利用常数变易法求解具有实特征根的四阶常系数非齐次线性微分方程,在无需求其特解及基本解组的情况下给出其通解公式,并举例验证公式的适用性。
Demonstrated in this paper is how the Constant-transform method, the typical method for solving differential equations of order one, is used in solving linear differential equations of order three.
利用常数变易法求解具有实特征根的四阶常系数非齐次线性微分方程,在无需求其特解及基本解组的情况下给出其通解公式,并举例验证公式的适用性。
Demonstrated in this paper is how the Constant-transform method, the typical method for solving differential equations of order one, is used in solving linear differential equations of order three.
应用推荐