如果你想使用有监督的学习算法,你需要标记数据。
If you want to use some supervised learning algorithm, you need labeled data.
半监督学习算法同时考虑有标记和无标记数据,能显著提升学习效果。
Semi-supervised learning algorithms, which consider both labeled and unlabeled data, can improve learning effectiveness significantly.
该方法通过几个分类器间协同学习,选出标记可信度比较高的无标记数据,再利用这些数据对已有的分类器作进一步的改进。
This method utilizing co-learning among several classifiers, selects the unlabeled samples which have high confidence, and then refines each classifier with these samples.
该方法通过几个分类器间协同学习,选出标记可信度比较高的无标记数据,再利用这些数据对已有的分类器作进一步的改进。
This method utilizing co-learning among several classifiers, selects the unlabeled samples which have high confidence, and then refines each classifier with these samples.
应用推荐