边界元法应用于计算辐射声场时,由于奇异积分的存在,会影响到计算结果的精度。
The singular integration will affect the precision of the result while the Boundary Element Method (BEM) is used in calculating sound radiation.
弹塑性边界元法中初应力(或初应变)奇异体积分的计算一直是一个较为困难、但又是非常重要的问题。
The calculation of the initial stress (or initial strain) singular integrals in elastoplastic boundary element method is a difficult, but an important problem.
处理基本解的奇异性是边界单元法的难题之一。
Deals with the singularities of the fundamental solution is one of the difficult problem of the boundary element method.
一种新的颤振分析方法——鲁棒颤振裕度法被介绍,它利用结构奇异值理论将系统模型和试飞数据有机结合起来进行颤振边界预测。
Pass to incorporate organically the flight test data and the system model, make use of the structured singular value theories proceed the flutter boundary estimate.
边界元法中如何有效地处理奇异积分,一直是人们极为关心的课题。
The paper presents how the higher order singularity of a boundary integral equation can be reduced.
本文给出一个和边界元奇异解相平行的级数法。
A series method parallel to the singularity method for boundary element is presented.
奇异积分问题是边界元法最大的问题之一,本文采用高斯积分法来解决。
Singularity integral is one of the most serious problems in FEM, and this paper adopts gauss integral to deal with it.
目的研究基于多极边界元法的三维位势问题解的奇异性处理方法。
Methods Fast Multipole Boundary Element Method, the method of solving the singularity, and the method of Laplace Transformation.
本文介绍了求解奇异摄动问题的一种有效方法——边界层函数法,并用此方法研究了在薄矩形板中的热传导问题。
In this paper, the boundary layer function method, an effective method for the solution of singular perturbation, was presented and used to deal with the heat transfer in thin rectangular plates.
边界元法中存在的几乎奇异积分的难题,一直限制着其在工程中的应用范围。
The application range of boundary element method (BEM) is reduced in engineering for a long time due to the difficulty of evaluation of the nearly singular integrals.
从而完成了超奇异积分方程组数值法的建立,这一方法现称之为有限部积分——边界元法。
So far, the numerical techniques solving the hyper-singular integral equations are established, and these are called finite-part integral-boundary element method.
在用直接边界元法解决弹性问题时,当场点与加载点重合时,边界积分方程将出现奇异。
When the direct boundary element method (DBEM) is used to solve an elastic problem and the field point coincides with the load point, the boundary integral will be strange.
样条虚边界元法是针对传统间接奇异边界元法存在的问题而提出的一种半解析半数值方法。
The spline fictitious boundary element method (SFBEM) is a modified method to the conventional indirect singular boundary element method.
采用边界元法分析弹塑性问题时,需要解决塑性域剖分单元上的强奇异积分汁算问题。
When applying BEM to elastoplastic problems, the strongly singular integrals over volume cells have to be estimated.
边界元法中存在拟奇异积分计算难题,它一直限制着边界元法在工程中的应用范围。
On account of the difficulty of evaluating the nearly singular integrals in boundary element method (BEM), the application range of BEM is reduced in engineering for a long time.
本文用边界元位移及应力外推法计算了V形切口的应力强度因子,在切口顶端附近设置小单元用以模拟切口顶端的应力奇异性。
At the top of notch, small size elements were used to simulate its stress singularity. The examples demonstrate that the present method could provide accurate results.
导出了一种解析积分算法,精确计算了二维各向异性位势问题边界元法中近边界点的几乎奇异积分。
A new analytical integral algorithm is proposed and applied to the evaluation of the nearly singular integrals in the Boundary Element Method for 2d anisotropic potential problems.
因而,基于波叠加法的声全息就不存在边界面上的参数插值和奇异积分等问题,而这些问题是基于边界元法的声全息所固有的。
Therefore, there are no problems such as parameters interpolation, singular integration etc. in WSA based acoustic holography, which are inherent to BEM based NAH.
为求解二维的奇异摄动反应扩散边界层问题,研究了新的多尺度有限元法。
The multi-scale finite element method is applied in the 3-D groundwater flow simulation problems in heterogeneous porous media.
为求解二维的奇异摄动反应扩散边界层问题,研究了新的多尺度有限元法。
The multi-scale finite element method is applied in the 3-D groundwater flow simulation problems in heterogeneous porous media.
应用推荐