通过基准及坐标的变换,最终得到目标物体的绝对坐标。
Through the transformations of criterion coordinate, the absolute coordinates of the object can be gotten finally.
他们的系统根据图像中的视觉编码来推导图像坐标到物体坐标的变换。
Their system induces the transformation between code coordinate system and image coordinate system with visual codes in the image.
在光栅扫描显示器上模拟传统PPI雷达显示器,不可避免地会遇到直角坐标与极坐标转换的问题,而雷达回波信号从极坐标到直角坐标的变换是决定系统性能的关键。
The issue of polar coordinate-orthogonal coordinate conversion, which is a key factor of the system, may be encountered inevitably as simulating traditional PPI radar indicator on raster scan display.
给出曲面积分在空间坐标的正交变换下的一个计算公式。
A calculating formula for surface integrals under orthogonal transformation of space coordinates is given.
证明了时间坐标的洛伦兹变换是两个时间的和:一个与时间膨胀有关,另一个与光子从光源到接收器的飞行时间的相对性有关。
The Lorentz transfer of time coordinates is the sum of two times, one related to time expansion and the other to the relativity of photon's flight time from the radiant to the receiver.
利用这个变换矩阵可以方便地将笛卡尔坐标的张量表达式、微分算子及有关公式变换成正交曲线坐标的相应公式。
Using the cosine transform matrix the Cartesian tensors, differential operators and related equations can be readily transformed into corresponding expressions in orthogonal curvilinear coordinates.
在B型超声机械扇形扫描成像当中,原始图像信号是以极坐标的形式输出的,对图像进行实时坐标变换和漏点插补是图像预处理所要解决的主要问题。
In the B-mode sector scan ultrasonic imaging system, the raw image is in polar coordinates, therefore, it is main tasks of image pre-processing to achieve image coordinate transform and interpolation.
本文介绍笛卡尔坐标与正交曲线坐标的“余弦变换矩阵”,证明这个变换矩阵是正交矩阵。
In this paper the cosine transform matrix relating Cartesian coordinates with orthogonal curvilinear coordinates is introduced.
推导了采用基于数字阵列坐标的直接线性变换方法的非量测普通数码相机方位元素解算方法。
The calculating equations for orientation elements of common digital camera are deducted using DLT method based on digital array coordinator assumption.
本文介绍笛卡尔坐标与正交曲线坐标的“余弦变换矩阵”,证明这个变换矩阵是正交矩阵。
In this paper the cosine transform matrix relating Cartesian coordinates with orthogonal curvilinear coordinates is introduced. It is shown that this transform matrix is an orthogonal matrix.
然后根据冠脉造影系统的透视投影模型得到两幅不同角度的造影图像之间的几何变换关系,以及空间点三维坐标的计算方法。
Then geometrical transformation matrix between views is obtained based on perspective projection model for X-ray angiography system, and 3D coordinate of spatial points are calculated.
然后根据冠脉造影系统的透视投影模型得到两幅不同角度的造影图像之间的几何变换关系,以及空间点三维坐标的计算方法。
Then geometrical transformation matrix between views is obtained based on perspective projection model for X-ray angiography system, and 3D coordinate of spatial points are calculated.
应用推荐