研究了周期函数及其最小正周期的若干问题。
三角表达式级数之和,用在周期函数分析上。
The Periodic Solutions Expressed in Terms of Jacobian Functions for Drinfeld-Sokolov Equations;
本文讨论周期函数的对称轴、对称中心等有关问题。
This paper mainly talks about the symmetric line and the symmetric centre of the periodic function.
对向量值缓慢振动函数及遥远概周期函数的性质作了讨论。
The properties of Vector-valued remotely almost periodic function and oscillate slowly function are discussed.
研究了渐近强周期函数空间、渐近周期序列空间的可分性质。
The separability of asymptotically strongly periodic function space and asymptotically periodic sequence space are also discussed.
将均匀梁结构延拓并加上附加载荷,使梁的位移化为周期函数。
A homogeneous structure of beam is in continuation and bears additional load; and the displacement of the beam is converted into periodic function.
用周期函数,有限项傅立叶级数,作为激励函数来获取训练样本。
A periodic function, finite Fourier series, is used to activate the actuator for obtaining training samples.
所考虑的非线性扰动力矩是角位置的周期函数,这在实践中是很常见的。
The disturbance torque dealt with is assumed to be periodic in position, which is very common in practice.
主要结果是:当高次项是奇数次齐次多项式时,周期函数是单调增加的;
The main results are. the period function is increasing when the higher degree is odd;
当声波是空间位置和时间的周期函数时,平面波误差项永远是一负偏差项。
The plane wave error is always negative windage, when the sound wave is the cycle function of space and time.
一股的方程我们已经能够解决相关的概周期函数类型解的存在性和唯一性。
We have solved the existence and the uniqueness of almost periodic type solutions of ordinary equations.
基于解决实际问题的需要,张传义教授提出了伪概周期函数和伪概周期序列。
Based on the need of solving practical problems, Professor C. Zhang proposed pseudo almost periodic function and pseudo almost periodic function sequence.
给出了一个利用福里哀系数求非常值的连续周期函数的最小正周期的有效方法。
A useful method is given which can count the least positive period of a continuous function by Fourier coefficients.
本文给出了周期函数的几个性质,并证明了连续的周期函数基本周期的存在性。
The article expounds the nature of periodic function and proves the existence of the base period of the continuous periodic function.
然后根据各子序列的特性分别建立幂函数、周期函数或ARMA模型并进行预测。
Power function, periodical function, and ARMA model are established according to the characteristics of sub-series.
三角函数反映了圆运动和直线运动的相互转化与对应关系,是初等函数中唯一的周期函数。
Trigonometrical function reflects Yuan Movement and the Movement of mutual conversion and the corresponding linear relationship is the only primary function of the cycle function .
对系数是概周期函数的传染病s IS模型进行了研究,得到了概周期解存在惟一的一个充分条件。
An epidemic SIS model whose coefficient is almost periodic functions is studied. A sufficient condition of existence and uniqueness of positive periodic solution is obtained.
周期函数的周期性是中学数学中的教学内容,掌握了函数的周期性,对函数性质的研究会带来不少方便。
This paper is intended to make a systematic study of periodic functions and to popularize them in teaching and learning.
结果显示:涡管流函数是时间的周期函数,并被表征为一系列在涡核内均匀分布螺旋涡丝流函数的叠加。
The result showed that the stream function of vortex tube was expressed as the superposition of the stream functions of vortex filament within the vortex core.
实例计算表明,相对于周期函数响应求解中通常采用的拉氏变换方法,本方法更为简便,并有广泛的适用性。
It has been proved by the example calculation that this method is simpler and more applicapable in comparison to La's transformation commonly used in resolving the response of periodic function.
这个方法是根据周期函数的傅里叶级数的性质和利用数学的抽象性质,直接推导出另外三种形式的傅里叶变换。
According the basic properties of Fourier series of period function and using of the abstract nature of mathematics, the method directly derives other 3 kinds of Fourier transform.
结果表明,动态自回归模型时变参数(时变系数)的变化是有规律的,其增量大体上是一些简单周期函数的叠加。
The results showed that the change of time-varying parameters (coefficient) in dynamic AR model has a regularity. Its increments are piled up by some simple period functions.
本文讨论了无最小周期的周期函数性质,论证了无最小周期的周期函数的处处不连续性以及这种周期函数的周期构成的集合的稠密性。
In this paper, some properties of the periodic functions without minimum period are shown, the main results are: the functions are discontinuous everywhere and the set of periods is dense.
本文讨论了无最小周期的周期函数性质,论证了无最小周期的周期函数的处处不连续性以及这种周期函数的周期构成的集合的稠密性。
In this paper, some properties of the periodic functions without minimum period are shown, the main results are: the functions are discontinuous everywhere and the set of periods is dense.
应用推荐