是求解双曲守恒律方程的高精度高分辨率数值格式。
WENO (weighted Essentially Non Oscillatroy) is a high resolution numerical scheme used for solving equations of hyperbolic conservation laws.
即使初始条件十分光滑,双曲守恒律方程的解也可能出现间断。
The solutions of the Hyperbolic conservation laws might develop discontinuity even if the initial conditions are very smooth.
提出了一种新的求解双曲守恒律方程(组)的四阶半离散中心迎风差分方法。
This paper presented a new semi-discrete central scheme for hyperbolic system of conservation laws.
对于上述齐次双曲守恒律方程组与其近似模型之间解的比较,已经有人得到了相关结果。
There are some results on the comparison of weak solutions of homogeneous hyperbolic system and its approximate model.
多年以来,近似双曲型守恒律方程的严格单调差分格式的离散激波的渐近稳定性一直被普遍认为已经得到解决。
For the strictly monotonic schemes approximating single hyperbolic conservation laws, the asymptotic stability of the discrete shocks is widely believed to have been worked out.
以求解双曲守恒律组的FD-WENO格式为基础提出了两类用于求解非守恒可压编理想流体力学方程组的数值方法。
Two classes of numerical methods based on FD-WENO schemes were recommended for solving nonconservative compressible ideal fluid dynamics equations.
二十世纪五十年代以来,双曲型守恒律方程数值计算方法的研究一直是计算数学中的一个重要研究方向。
Since 1950' s, the research of numerical method for hyperbolic conservation laws is one of key research directions in computational mathematics.
二十世纪五十年代以来,双曲型守恒律方程数值计算方法的研究一直是计算数学中的一个重要研究方向。
Since 1950' s, the research of numerical method for hyperbolic conservation laws is one of key research directions in computational mathematics.
应用推荐