电子非常轻,因此在原子量中甚至没有计算它。
Electrons weigh very little, so they aren't even counted in the atomic weight.
大多数的候选系统,如原子和半导体量子点,只能在非常低的温度才能进行量子计算的工作。
Most of these candidate systems, such as atoms and semiconducting quantum dots, work for quantum computing, but only at very low temperatures.
在每个步骤中,我们计算每个原子受到的作用力,然后根据牛顿第二法则更新速度和位置。
At each time step, we calculate the forces on each atom, then we update the velocities and the positions according to Newton's second law.
量子计算的一种实现方法依赖于相互纠缠的光子和原子,这是一种联系非常紧密的量子态,即使两者间隔很远也能相互影响。
One approach to quantum computing relies on entangling photons and atoms, or binding their quantum states so tightly that they can influence each other even across great distances.
我们应该可以计算出任何一个,我们想要谈论的原子的有效电荷量,只要我们知道电离能是多少。
So we should be able to calculate a z effective for any atom that we want to talk about, as long as we know what that ionization energy is.
最妙的部分来了:据亚历克斯·贝洛所说,佛陀的计算结果一个原子的大小与实际非常接近!
So here's the neat part: According to Alex Bellos, it turns out the Buddha's calculation got the size of an atom very close to right!
仍然存在其他的不确定性需要计算出来,直到研究人员得到满意的结果,大多数不确定性是由于原子在它的电场管道轻微的移动。
There are still other uncertainties that need to be worked out, mostly due to the atom's slight motion in its electric field trap, before the researchers will be satisfied.
付拉屯:有很多人也想孤立出单个的原子,你知道,他们的想法是,用这些原子搭建某种设备,也许是量子计算机吧。
FLATOW: and there are a lot of people who want to isolate atoms, and the idea is to, you know, think about hooking the atoms together to make devices, maybe a quantum computer.
对原子变热会如何膨胀的新计算,能有效提高下一代原子钟准确度10倍。
New calculations of how atoms swell when they're warmed up can help make the next generation of atomic clocks 10 times more precise.
为了加快研究进度,桑基和他的学生埃里克.戴克曼(Eric Dykeman)开发了一种计算单个病毒原子震动模式的方法。
To expedite this search, Sankey and his student Eric Dykeman have developed a way to calculate the vibrational motion of every atom in a virus shell.
一旦发生纠缠,光子可以将储存在原子量子态中的任何信息传递到计算机的其他位置。
Once entangled, a photon can carry any information stored in the atom's quantum state to other parts of the computer.
传统上,量子计算机的构件是极细小的微粒——离子、量子点或是单个的原子。
Traditionally, the building block of quantum computing has been tiny particles--ions, quantum dots or individual atoms.
所以如果我们可以计算出结合能,我们也可以计算出,我们需要注入多少能量到原子中,去逐出或电离一个电子。
So if we can figure out the binding energy, we can also figure out how much energy we have to put into our atom in order to a eject or ionize an electron.
背心能够探测到氦原子方向和位置,然后把数据传给计算机,再转化成一副气流流经肺部的图像。
The vest detects the orientation and position of the helium atoms and sends the data to a computer, which turns it into an image of airflow through the lung.
这些材料也将用计算机模型开发原子结构,接着模拟电子在其中的行为模式。
They too are using computer models to explore atomic structures and then to simulate how electrons will behave in them.
我们已经可以使计算机在单碘分子和由几种原子组成的晶体管上运行,那么为什么不利用微小的DNA链来创建电子部件呢?
We’ve got computers that run on a single iodine molecule and transistors made of just a handful of atoms, so why not create electronic components out of tiny strands of DNA?
在其原子部分的层次上确切了解一台计算机是不可能的。
It's impossible to comprehend a computer strictly at the level of its atomic parts.
比勒的团队进行了一系列原子水平的计算机模拟,以考察天然丝中分子失灵的机制。
Buehler's team carried out a series of atomic-level computer simulations that investigated the molecular failure mechanisms in silk.
凯利:总结一下,这种极端观点似乎是这样的:组成原子的这些比特正在一个被称之为宇宙的巨型计算机中运行,这种理念最早的支持者就是巴贝奇。
Kelly: the extreme view would be that all these bits that make up atoms are running on a very big computer called the universe, an idea first espoused by Babbage.
对于天然丝,他们的研究方法采用计算机模型,来帮助确定使天然丝材料具有卓越力学特性的分子与原子机制。
With silk, that means using computer models that help determine the molecular and atomic mechanisms responsible for the material's remarkable mechanical properties.
只是在过去的30年间,计算器的引入才使手表才变得智能化;而也仅仅是最近的几年中,计时器和卫星技术才运用在了原子钟表里。
Only in the last 30 years have they gotten smarter with the introduction of things like calculators and, more recently, chronographs and satellites tied to the atomic clock.
举例来说,计算表明,钍- 229的原子核内存在着能发出紫外线的转变过程。
Calculations suggest, for instance, that in the nucleus of the isotope thorium-229 is a transition that should emit ultraviolet rays.
量子化学计算机模型已经建立,这是一种十分强大的技术手段,可让化学工程师制造出某种设备,以达到从原子水平上控制化学反应的目的。
Powerful tools such as quantum-chemical computational models allow chemical engineers to build structures that can control reactions at the atomic level.
量子计算能使未来原子钟更精确。
Quantum calculations can make atomic clocks of the future far more accurate.
“我们从最初原则计算,从量子力学和原子的基本认识处罚,没有任何实验输入调整计算结果,”Safronova说。
"We did them from first principles, from a basic understanding of quantum mechanics and atoms, without putting any experimental inputs to adjust the calculations," Safronova said.
很多计算系统用的都是网络时间协议(ntp),以保证他们和世界原子时钟是同步的。
Many computing systems use the Network Time Protocol, or NTP, to keep themselves in sync with the world's atomic clocks.
为了寻找更稳定的方法来储存量子信息,Awschalom已经计算出一个电子的旋转与附近氮原子核旋转的的联系。
In search of a more stable way to store quantum information, Awschalom has now figured out how to link the spin of a electron to the spin of the nearby nitrogen's nucleus.
通常情况下,线性缩放密度泛函理论的应用还是很少的,而密度泛函理论只能计算成百、成千的原子电子结构。
In general though, linear scaling DFT is still quite rare and DFT calculations on a routine basis typically involve a few hundreds or thousands of atoms.
本文应用分子动力学计算机模拟方法研究同核双原子分子晶体体系的内部传能机制。
We investigate in this paper the mechanism of energy transfer in homonuclear diatomic molecular solid system by the computer simulation with molecular dynamical method.
本文应用分子动力学计算机模拟方法研究同核双原子分子晶体体系的内部传能机制。
We investigate in this paper the mechanism of energy transfer in homonuclear diatomic molecular solid system by the computer simulation with molecular dynamical method.
应用推荐