亚纯函数与整函数的分解理论是单复变函数论中一个令人感兴趣的课题。
The factorization theory of meromorphic and entire functions is one of interesting problems in complex analytic function theory.
通过讨论初等多值函数的单值解析分枝问题,重点研究了初等多值函数在复变函数中的具体应用。
The multi-valued problems of elementary complex functions are discussed, and then the applications of general multi-valued functions in complex functions are discussed mainly.
本文运用协变方法和么正方法,分别给出了W-N理论和H-N理论量子宇宙波函数的单圈修正;并且讨论两种算法的差异性及矢量-张量引力理论的可行性。
We calculated the one - loop correction of W - N theory with unitary approach and H - N theory with covariant approach, then discussed the difference between the two approaches.
它共分六个部分:映射定理;单叶调和函数的数值估计;特殊映射;变分方法;境界性质和在极小曲面中的应用。
It contains six parts: mapping theorems, numerical estimations of univalent harmonic functions, special mappings, variational method, boundary behavior and applications to minimal surfaces.
它共分六个部分:映射定理;单叶调和函数的数值估计;特殊映射;变分方法;境界性质和在极小曲面中的应用。
It contains six parts: mapping theorems, numerical estimations of univalent harmonic functions, special mappings, variational method, boundary behavior and applications to minimal surfaces.
应用推荐