描述许多轨道控制问题的方程通常构成非线性半显式的微分代数系统。
The equations which describe many trajectory control problems naturally form nonlinear semiexplicit differential algebraic systems.
结果表明代数动力学方法对于具有非半单李代数结构的线性动力系统仍然适用。
It has also been shown that the algebraic dynamics might be generalized from the linear dynamic system with a semi-simple Lie algebra to that with a general Lie algebra.
在第二部分第一篇论文中,我们系统研究了二维非交换李代数及其全形的可解性、完备性与非半单性等性质。
In the first paper of the second part , it studies two dimensional noncommutative Lie algebra and its solvability, completeness and nonsemisimplicity and so on .
在第二部分第一篇论文中,我们系统研究了二维非交换李代数及其全形的可解性、完备性与非半单性等性质。
In the first paper of the second part , it studies two dimensional noncommutative Lie algebra and its solvability, completeness and nonsemisimplicity and so on .
应用推荐