分层快速多极算法被用来加速用迭代法求解线性方程组时的矩阵向量乘积的运算。
Multilevel fast multipole method is used to fast calculate the matrix-vector product when we solve the linear system by iterative method.
通过对非线性方程求根牛顿迭代法的分析,给出牛顿迭代法的一种新的加速技巧,并通过数值算例验证所作的理论分析。数值结果表明该加速方法是行之有效的。
By analyzing the Newton iterative method for nonlinear equation, a new acceleration technique of Newton method is proposed. Numerical results indicate that the acceleration method is effective.
计算所用的网格是具有交错网格主要特点的修正非交错网格,并采用一种压力修正法和G - S中心对称迭代法加速收敛。
Furthermore, a pressure correction procedure and the Gauss-Seidel centrally symmetric iteration algorithm are used to enhance the convergence rate.
计算所用的网格是具有交错网格主要特点的修正非交错网格,并采用一种压力修正法和G - S中心对称迭代法加速收敛。
Furthermore, a pressure correction procedure and the Gauss-Seidel centrally symmetric iteration algorithm are used to enhance the convergence rate.
应用推荐