凸包问题是计算几何的基本问题之一,在许多领域均有应用。
Convex hull problem is one of the fundamental problems in computational geometry, and is used in many fields.
最小凸包是计算几何中得到广泛研究的问题之一,在地理信息系统中也有着广泛应用。
The minimum convex closure is one of the widely studied problems in science of computing geometry, as well as extensively applied in many fields of GIS.
最后,介绍了目前流行的两种投票法,并针对现有投票法的问题和缺点,提出一种最小内凸包的算法。
To solve the problems, the minimum internal convex hull algorithm is proposed in this paper. The method holds both low-computational costs and faster calculation speed .
是的,凸包是计算几何的核心问题,也是一种基础性的几何结构。
Yes, convex hull is at the kernel of computational geometry and serves as a fundamental geometric structure.
同时在对多边形填充过程中使用了凸包算法,解决确定多边形顶点顺序问题。
At the same time in the polygon filling process , the Graham algorithm is used to determine the polygon vertex order.
提出了一种基于有序简单多边形的平面点集凸包快速求取的改进算法,新的算法能够避免极值点重合的问题。
This paper improves the fast convex hull algorithm of planar point set based on sorted simple polygon.
提出了一种基于有序简单多边形的平面点集凸包快速求取的改进算法,新的算法能够避免极值点重合的问题。
This paper improves the fast convex hull algorithm of planar point set based on sorted simple polygon.
应用推荐